10 Mankind encounters the stratosphere

Here I present the opening page of a paper presented to the Royal Society of London in 1908 by Mr E Gold relating to an ‘isothermal layer’ in the atmosphere. ‘Iso’ means equal. At a certain elevation the temperature of the air ceases to decline with altitude and appears to stabilize. This was a great surprise and a challenge to understand and explain. The challenge is still there, more than 100 years later. The science is by no means settled.

Isothermal layer

Teisserenc de Bort was chief meteorologist for the Central Meteorological Bureau in Paris from 1892 until 1896, when he opened his own meteorological observatory at Trappes, near Versailles.

de Bort discovered a difference in the temperature profile between high pressure cells and low pressure cells. The height at which temperature no longer falls was observed to be 12.5km in high pressure cells and only 10 kilometres in low pressure cells.

The question is: Why Is it so?

Gordon Dobson, working in the late 1920s observed that total column ozone is enhanced in low pressure cells and reduced in high pressure cells. Near the surface the air in low pressure cells is colder and denser than high pressure cells because low pressure cells originate in higher latitudes. The expectation is that the air in low pressure cells would be denser throughout the atmospheric column and that there would be more molecules in the atmospheric column, not less. That there are less molecules (lower surface pressure) is due to an anomalous reduction in density aloft due to ozone heating.

This state of affairs is reflected in the temperature of the atmospheric column at 30-40° south seen below:

30-40S

Notice that the lapse rate is lower and the cold point is warmer in winter when ozone partial pressure increases and low pressure cells are found closer to the equator. From this figure we see that the lapse rate (decline of temperature with altitude) is reduced by ozone above the 300 hPa pressure level (8 kilometres).  The enhanced presence of ozone above and below the point of reversal at 100 hPa is responsible for a warmer ‘tropopause’ than in lower latitudes.  The temperature at the point of reversal is -70° C at 30-40° south latitude whereas it is commonly -85°C above the equator. The warmer ‘tropopause’ is found at a lower elevation than at the equator. It is also found at a lower elevation in cells of low surface pressure than in cells of high surface pressure as observed by de Bort. Cells of high surface pressure originate in lower latitudes where there is less ozone to warm the atmospheric column aloft.

At 50-60° south the ‘cold point’ or ‘point of reversal’ is still warmer as seen below. But its temperature and elevation varies according to the time of the year.  Here, the presence of very cold air from the mesosphere tends to lower temperature in winter against the influence of increasing ozone partial pressure.50-60S

As latitude increases the temperature profile of the atmospheric column is increasingly affected by the presence of ozone at ever lower altitudes. The cold point is not a point of demarcation between ozone affected air and air that is free from ozone.  One might say that the stratosphere is invading and taking over the troposphere. But, more accurately, one would say that the nature of the atmospheric column is changing so as to render the terms ‘troposphere’, ‘stratosphere’ and ‘tropopause’ less and less meaningful. The cold point ascends into the stratosphere as the point at which ozone is present in the atmospheric column descends towards the surface. It is no longer appropriate to refer to the atmosphere below the cold point as the ‘troposphere’. Because its temperature profile is affected by ozone it is as much stratosphere as troposphere.

In truth, as we approach the poles the terms, ‘troposphere’, ‘stratosphere’ and ‘tropopause’ become a source of confusion.  For instance, at 50-60° of latitude we can observe that the  cold point is located in the upper margins of the ozonosphere (defined as a zone containing ozone that influences the lapse rate of temperature with elevation). In winter the cold point establishes at 10 hPa where the greatest heating due to ozone is experienced.  In conventional parlance the stratosphere, considered as that part of the atmosphere below the cold point, would simply have disappeared and the entire column up to 30 hPa would be called ‘troposphere’.

In fact, the term ‘stratosphere’, implying that the air is stratified into different layers with the temperature aloft greater than the temperature below, is  misleading. It is the presence of ozone that is responsible for the formation of the most extensive areas of uplift that extend throughout the entire atmospheric column. This is the enigma of the cold core polar cyclone, cold and dense at the surface, warm and much less dense over a much broader area aloft with ‘aloft’ implying continuation into the stratosphere. It is the stratospheric component that accounts for the lower surface pressure. Does that reality square with the notion of ‘stratified?

REALITY

For the purpose of understanding weather and climate we should forget about ‘troposphere’ and ‘stratosphere’.  It is more productive to make distinctions between parcels of air that have relatively consistent but quite different characteristics and respect that the parcel has a tropospheric component and a stratospheric component. These parcels pay no respect to the notion of a ‘tropopause’ because it is their characteristics in the ozonosphere that differentiates them.

The description of the atmosphere might then go something like this:

LOW PRESSURE CELLS

The low density and warmth aloft in a low pressure cells is unrelated to surface conditions. It is due to ozone. Reduced atmospheric density due to the presence of ozone initiates uplift.  Uplift aloft promotes uplift below. Uplift below together with the intake of moist air of tropical origin results in cloud and precipitation.  Cloud reflects solar radiation keeping the surface cool. Cloud absorbs long wave radiation from the surface promoting a warmer atmospheric column. Precipitation results in the release of latent heat warming the atmospheric column and reducing its density. Low pressure cells carry cold air into warmer latitudes maintaining the temperature differential at the surface. Accordingly, by virtue of the ozone in the air aloft, the heat engendered below, the heat gained from long wave radiation by both atmospheric moisture and ozone and the movement towards lower latitudes the pressure differential between cells of low surface pressure and the surrounding atmosphere tends to be maintained. But the process results in the erosion of ozone aloft due to the solubility of ozone in water. Low pressure cells are a watery environment, not within their core but on their wide margins where moist tropical air is drawn into the circulation. For this reason, the life of a low pressure cell is limited. Nothing like this phenomenon is generated in mid or low latitudes. Tropical cyclones have a narrow core that peters out aloft. Polar cyclones have a wide dry cold core below and broaden aloft into an even wider dry core that is plainly located in the region that we have been accustomed to call the stratosphere. In fact its ozone that gives these ascending columns of air their life force.

HIGH PRESSURE CELLS

High pressure cells are formed at lower latitude where the surface air is warmer. The consequent reduction of air density in the near surface air means that the 500 hPa pressure level is located at a higher elevation than in low pressure cells. Aloft, the relative deficit in ozone gives rise to enhanced air density.  This enhanced density aloft is responsible for the greater weight of the atmospheric column in a high pressure cell as measured at the surface.  Settlement occurs in the winter hemisphere associated with cold landmasses and cold water and over relatively cold waters on the western sides of the continents in the summer hemisphere.  Contact with a cold surface cools the air enhancing density and assists the process of descent. Descending air is dry, warming due to compression and relatively cloud free, especially in the core, less so on the margins. As pressure increases in a high pressure cell one would expect geopotential height to fall due to increased density in the lower part of the column. However, it is observed that geopotential height increases and the increase in geopotential height, increases with elevation. This is due to the downwards descent of ozone, making the column warmer and reducing the incidence of cloud.

THE JET STREAM

The difference between the two air masses establishes a horizontal density gradient that is steepest above 500 hPa. The steepness of the density gradient is associated with rapid circular motion and the elevation of low density air. This convective process manifests as a jet stream that circulates around the globe rather than around the periphery of low pressure cells. One arm tends to be located where high latitude ozone rich air meets ozone deficient air from lower latitudes. Another arm of the jet stream manifests at the polar vortex where there is a steep gradient in ozone and air density between ozone rich air on the periphery and ozone deficient air from the mesosphere within the core. Nowhere is this jet stream continuous. It is a porous medium allowing mesospheric air to escape into the wider atmosphere. In summer when surface pressure is lower at the pole and ozone partial pressure falls away in high latitudes mesospheric air no longer descends into the upper atmosphere and the entire polar region is relatively ozone rich. The absence of mesospheric air in the circulation is associated with a reversal of the flow at 10 hPa. The near polar arm of the jet stream disappears as surface pressure falls away and cold air of mesospheric origin withdraws.

THE DISTRIBUTION OF OZONE

The warmth that initiates the ascending circulation in low pressure cells is not at the surface. It is in the upper half of the atmosphere. This is due to the increase in the ozone content of the air in high latitudes due to reduced photolysis of ozone at low sun angles, especially in winter. In today’s climatology (as in IPCC reports), the reason given for enhanced ozone in higher latitudes and the Arctic in particular is ‘the Brewer Dobson circulation’ involving the descent of ozone from aloft in high latitudes. But this transport phenomenon can not explain concentration enhancement. A body of air with a given constitution can not change its constitution simply by moving to another place. Concentration enhancement is made possible by reduced photolysis as the sun sinks towards the horizon and the wave lengths that photolyze ozone are progressively screened out. This enhancement of ozone partial pressure does not explain the higher concentration of ozone in both summer and winter in the northern hemisphere. That is due to the relatively reduced intake of mesospheric air over the Arctic by comparison with the Antarctic. There is an alternative area of descent in the northern hemisphere called the Siberian High and another over the Greenland Hudson’s bay area but nowhere does surface pressure approach that seen over the Antarctic ice mound in winter. The difference in the ozone content of the two hemispheres is reflected in an enhanced erythermal UV index in the southern hemisphere, especially in summer.

In conventional climate science the atmosphere is driven by heating of the surface at the equator. In the climate science that takes account of ozone phenomena ozone is observed to be the single greatest source of atmospheric heating and it is most pronounced in the winter hemisphere. It gives rise to a zone of uplift over the oceans at roughly 60-70° of latitude in both hemispheres.

Conventional climate science has no plausible explanation for the existence of a ‘cold core’ polar cyclone’ and it struggles to provide a plausible reason for the jet streams.

Conventional climate science has no explanation for the planetary low in surface atmospheric pressure at 60-70° south latitude that has intensified over the period of record.

A low pressure circulation that engages the totality of the atmospheric column including what is confusingly described as ‘troposphere’ and  ‘stratosphere’ (low pressure cells at between 30° and 60° of latitude) must be balanced by a matching descent of stratospheric air into the ‘troposphere’. What goes up must come down. That is accommodated in zones of high surface pressure where air descends.  High pressure cells form at lower latitudes where the circumference of the Earth is greater. High pressure cells are accordingly very extensive requiring a relatively slow rate of descent over a very broad area. The ozone descending from the stratosphere is shared over this broad area and much diluted in concentration in the process. The presence of ozone in high pressure cells, while it warms the air and raises geopotential height as the ozone concentration of the air anomalously increases, is insufficient to counter the tendency of the air to settle. As the air is warmed clouds disappear allowing more radiation to reach the surface, the prime source of surface temperature variations on all time scales. This is the subject of chapter 3 https://reality348.wordpress.com/2015/12/29/3-how-the-earth-warms-and-cools-naturally/

THE POLAR HIGH

Descent also tends to occur at the pole where surface pressure increases in winter due primarily to a shift in mass from the summer hemisphere. The velocity of descent at the pole is no greater than in the upper atmosphere in the mid latitudes, in fact it is possibly less. It may be enhanced according to the vorticity of the circulation driven by ozone outside the margins of the polar cap and also as surface pressure episodically increases. It is retarded when surface pressure falls as naturally occurs in summer.  Research suggests that there is an overriding geomagnetic effect via the behaviour of charged particles in a magnetic field. The polar atmosphere has a low plasmapause and is much subject to ionization by cosmic rays. These factors will tend to facilitate a geomagnetic effect.

There has to be a countervailing force. Ozone, left to its own devices, would keep on lowering surface pressure that has the effect of excluding mesospheric air and allowing the partial pressure of ozone to build up. In any event the advent of summer puts an end to the process. The ozone content of the air is inhibited in summer by increased photolysis. Surface pressure falls as the atmosphere warms and becomes less dense. The winter hemisphere cools and draws in atmospheric mass.  It is in the alternate winter hemisphere that the process begins afresh. This is the reason why surface temperature is seen to increase in winter rather than summer. It is also the reason for the much enhanced volatility of surface temperature in January-February and July August. It is the reason why all points north of 30° south experience greatest volatility in January and February and all points south of 30° south experience greatest volatility of temperature in July and August. Why the split at 30° south. Its because of the ozone supercharged nature of the Arctic atmosphere as against the ozone impoverished nature of the southern hemisphere gives the former greater reach.

CONVECTION IN THE STRATOSPHERE AND THE GENERATION OF THE PLANETARY WINDS

It is observed (in IPPC climate science) that an increase in the temperature (or geopotential height) of the ozonosphere in high latitudes (50° through to 90° of latitude) is associated with a loss of atmospheric mass (reduced surface pressure) in high latitudes and a gain in mass (surface pressure increase) in the mid latitudes and elsewhere. What is not observed in IPCC climate science is that this shift in atmospheric mass can be extended to decadal and longer time scales. There is a cycle of change in atmospheric pressure in high southern latitudes that is longer than the seventy years of reanalysis data. This change in surface pressure alters the planetary winds on a relatively enduring basis. The failure of IPCC climate science to realize the cause of this atmospheric shift or to associate it with the manner in which the globe warms and cools over long time periods represents a failure to observe, analyse and reason. This represents a failure to come to grips with the origin of climate change that is natural in origin and the disaster of false attribution.

A FAILURE TO OBSERVE, ANALYSE AND REASON

It can be observed that in the mid and equatorial latitudes, surface temperature increases directly with atmospheric pressure. As described above this phenomenon relates to the change in cloud cover. Surface pressure rises in the mid latitudes as it falls in high latitudes. This is the primary dynamic behind weather and climate change on all time scales.

It is plain that the evolution of the planetary winds and temperature at the surface of the Earth is intimately associated with this flux in surface pressure wrought by ozone heating in high latitudes.

Mr Gold made the following statement in his paper delivered in 1908:

It is clear that there cannot be convection currents to any marked extent in this region

That there cannot be convection in the stratosphere is an article of faith in climate science to this very day.  This error arises due to a lack of appreciation of the heating properties of ozone as an absorber of long wave radiation from the surface of the Earth and conceptual confusions as to the nature of the atmosphere encapsulated in the continued use of the terms ‘troposphere’, tropopause and stratosphere’.  Mr Gold was aware of the heating properties of ozone but had no knowledge of the distribution of ozone according to latitude and altitude, its enhancement in winter hemisphere or the interaction with mesospheric air at the poles that drives change in ozone partial pressure over time.

The result of  ozone enhancement in high latitudes where there is a close conjunction of cold dense air from the mesosphere and warm light air heated by ozone is convection on a massive scale that corresponding to annular or ring like pattern of troughs in surface pressure manifesting in high latitudes and on a scale that dwarfs the manifestations of low surface pressure elsewhere on the planet, even under the pressure of direct solar radiation and massive precipitation, two forces that contribute very little to uplift in high latitudes. The flux in ozone driven convection is what gives rise to the phenomenon known as the ‘Annular Modes’, now well recognized in the annals of the IPCC, but regarded as a mystery both in terms of its mode of causation and its impact on climate.

Convection can be driven by heating of the surface. It can be driven from the lower atmosphere via precipitation at cloud level. And it can be driven by ozone heating in high latitudes where ozone tends to be ubiquitous throughout the atmospheric column.  Of these forces, the most powerful, pervasive and influential is the last. This pervasive regulating force,  is unrecognised in ‘climate science’ as it manifests in the works of the United Nations  International Panel on Climate Change. If it were recognized as the driver of the planetary winds and cloud cover we would no longer be speculating as to whether the activities of man are the cause of ‘climate change’.

Unfortunately, climatology is not yet at first base in understanding the generation of the planetary winds. Without an understanding of the origin of shifts in atmospheric mass or the physics behind the generation of cold core cyclones there is no possibility of understanding the source of natural climate change. We are then extraordinarily susceptible to the arguments of those who seek to exploit our ignorance.

Climate is not complex and nor is climate change. It is in the interest of every citizen, every voter and every taxpayer to take an interest in this matter and not leave it to the those who style themselves as professors, doctors of science or simply as ‘experts’.

EFFECT OF THE SUN

It has long been supposed that the solar cycle influences climate and in particular it is supposed that as the sun becomes more active (more sunspots) the earth might be warmer. But, those who have closely examined the data suggest that a maxima in sunspot activity frequently coincides with a cooling of the tropics while the reverse is also the case. There is no evidence that the energy quotient in solar radiation increases with sunspot activity although the composition of solar radiation certainly does change within the sunspot cycle.

On the other hand geomagnetic activity wrought by the solar wind, while it rises and falls with sunspot activity  has a different mode of activity in that it conditions the behaviour of  the Earth’s magnetic field as it manifests in the atmosphere.  The ozone cycle via its effect on surface atmospheric pressure  has the capacity to greatly magnify small changes in atmospheric pressure in the same direction as the initial change wrought by geomagnetic activity. This impacts climate on both shorter time and longer time scales than the eleven year sunspot cycle..

Geomagnetic activity, as an initiating force has the capacity to change the ozone cycle by modulating the amount of NOx that is drawn into the ozonosphere via the polar vortex in winter. An enhanced flow of NOx either from the troposphere or the mesosphere erodes ozone and reduces the temperature of the stratosphere over the pole due to a ‘space occupying effect’. If cold mesospheric air is present the warmer air is displaced to lower latitudes. This is a natural dynamic that depends upon surface pressure, much more active in winter than summer. It is for this reason that ‘sudden stratospheric warmings’ are a winter phenomenon.

This natural ebb and flow of air between the mesosphere and the stratosphere is manifestly more influential in determining the partial pressure of ozone than the flux in short wave solar radiation. When the temperature of the stratosphere over the poles changes there is a knock on  effect, rippling across the atmosphere like little waves on a pond, ever smaller in amplitude as they propagate across the globe into the summer hemisphere.

 

 

 

Advertisements

9 thoughts on “10 Mankind encounters the stratosphere

  1. So is it fair to say change in air temperature is a physical response rather than from chemical one? Ie from pressure changes not uniformly distributed chemical composition changes.?

    Like

  2. Hi Macha, not sure of your drift. Does it relate to this statement?
    ” As pressure increases in a high pressure cell one would expect geopotential height to fall due to increased density in the lower part of the column. However, it is observed that geopotential height increases and the increase in geopotential height, increases with elevation. This is due to the downwards descent of ozone, making the column warmer and reducing the incidence of cloud.”

    Like

  3. Yes, sorry not to be specific. Reaaly just a short hand way to confirm its not due to CO2 gas. ;-). I should stop being obtuse, bad habit from warmist sites.. Love your work.

    Like

  4. So, Erl, to what extent have humans been the cause of the so-called ozone hole over Antarctica? Then, to what extent is it possible to change or control the ozone hole through the regulation of “ozone destroying gaseous chemicals”?

    It seems from what you have been saying in this series of posts, that you think broad differences in ozone distribution between the Northern and Southern Hemispheres are largely a consequence of natural processes. Or have I got that wrong?

    Like

  5. I can’t rule out a human contribution to the ‘ozone hole’ but it appears that the major impact is via natural processes. This post discusses the issue and finds in the negative:https://tallbloke.wordpress.com/2016/02/03/jamal-munshi-an-empirical-test-of-the-chemical-theory-of-ozone-depletion/

    The lack of understanding of the role of ozone in the formation of polar cyclones, the jet streams and the long term evolution of surface pressure is unfortunate to say the least. The current state of the science is here:http://www.columbia.edu/~lmp/paps/waugh%2Bpolvani-PlumbFestVolume-2010.pdf

    That work is not informed by an understanding of the physical processes behind the differences in the ozone content of the two hemispheres, the nature of polar cyclones, the origins of the decline in surface pressure in high southern latitudes or the continuing role of ozone in regulating cloud cover. It is rich in description of what is going on in the vortex itself but weak in understanding the influence of the vortex on the wider stratosphere….it regulates the ozone content of the stratosphere. Fact of the matter is that ozone has been building up outside the vortex due to a historical decline in the activity of the Antarctic vortex. The build up of ozone outside the vortex may be implicated in the decline of ozone in the lower stratosphere due perhaps to enhanced vortex penetration in September/October as the upper stratosphere starts to warm with the approach of summer. The most noticeable change in the Antarctic stratosphere since 1948 has been the extent of the warming at 10hPa over the pole peaking in October. Is that a coincidence?

    Climate science in general ignores the build up of ozone outside the vortex and focusses on the decline within the vortex. They see the hole, not the donut. its driven by a Green Agenda.

    Like

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s