36 THE JET STREAM

Pioneering work in establishing that the speed of the wind increased with elevation was  initiated in the first world war by people like Robert Millikan who worked for the US signal corps. He wrote

Within the past year approximately 5000 . . . [pilot balloon] observations have been taken by the Meteorological Service of the Signal Corps . . . the balloon is kept in sight up to distances as great as 60 miles and up to heights as great as 32,000 meters, or approximately 20 miles . . . observations show air currents increasing in intensity with increasing altitude and approaching the huge speed of 100 miles per hour. Such speeds are perhaps exceptional but not at all uncommon.

Gordon Dobson followed up this work in the 1920’s.

Wasaburo Ooishi in Japan amassed a total of 1288 observations between March 1923 and February 1925 and published a paper on the subject in Esperanto, to make it accessible to non-Japanese speakers.Here is Ooshi’s plot of wind speed as it varies with elevation  in the vicinity of his observatory at Tateno, twenty kilometres  north of Tokyo.

Wind speed Japan

The seasonal variation in the winds was analysed.

Upper air speed by season

Source: http://journals.ametsoc.org/doi/pdf/10.1175/BAMS-84-3-357

So, what drives the air so that its velocity increases with altitude? Why is the velocity greater in winter? Is it all driven by warming at the surface? Is it driven  by the release of latent heat of condensation. Or is it differences in air density that manifest above the cloud layer in that confusing space that is shared by  the troposphere and the stratosphere?

When surface pressure is high, there is little ozone in the upper air, the troposphere is 2-3 km higher. When surface pressure is lower there is more ozone in the upper air and the tropopause is lower. In high latitudes we have the side by side conjunction of these two species of air at The Polar Front. The classical illustration  is in the southern hemisphere where a chain of low pressure cells sometimes described as the Circumpolar Trough constitutes the mixing zone for these different species of air with high surface pressure, ozone deficient air over the continent and low surface pressure, ozone rich air on the equatorial side of the trough.

This conjunction is an untenable situation.  The stratospheric resolution of this unstable conjunction of two species of air is the polar vortex, a stream of ozone rich air circulating roughly about a particular line of latitude taking air to the top of the atmosphere. At 250 hPa this stream of high velocity air manifests as the jet stream. As the stream ascends further into the stratosphere its velocity increases. This is a winter phenomenon due to the descent of cold mesospheric air inside the stratospheric vortex at that time of the year.

The above is my view on the matter. Now lets look at the conventional meteorological  viewpoint.

The explanation of the nature of the jet streams that appears below was, until recently, provided by the American Meteorological Society at:  http://www.ametsoc.org/amsedu/proj_atm/modules/JetStreams.pdf

It is no longer available at that address.

In providing this paper I could not  resist highlighting  important statements in red, interspersing a few comments in blue (where the explanation can be improved) and I follow up with some comments at the end.

Introduction: Jet Streams

As World War II was approaching its conclusion, the United States introduced the first high-altitude bomber plane called the B-29. It could fly at altitudes well above 20,000 feet (6.1 kilometers). When the B-29s were being put into service from a Pacific island base, two air force meteorologists were assigned the task of producing a wind forecast for aircraft operations at such altitudes.

To make their prediction, the meteorologists used primarily surface observations and what is known in meteorology as the “thermal wind” relationship. In plain language, this relationship implies “that if you stand with your back to the wind, and the air is colder to the left and warmer to the right, the wind will get stronger on your back as you ascend in the atmosphere.” Using this relationship, the meteorologists then predicted a 168- knot wind from the west. Their commanding officer could not believe the estimate. However, on the next day, the B-29 pilots reported wind speeds of 170 knots from the west! The jet stream was discovered.

Actually atmospheric scientists had theorized the existence of jet streams at least as early as 1937. The bomber pilots just confirmed it. Now many television weathercasts mention the positions of jet streams and their impact on daily weather events.

Jet streams are relatively strong winds concentrated as narrow currents in the upper atmosphere. The polar-front jet stream is of special interest to meteorologists because of its association with the regions where warm and cold air masses come in contact and middle latitude storm systems evolve. The polar-front jet stream encircles the globe at altitudes between 6 and 8 miles (9 and 13 kilometers) above sea level in segments thousands of kilometers long, hundreds of kilometers wide, and several kilometers thick. It flows generally from west to east in great curving arcs. It is strongest in winter when core wind speeds are sometimes as high as 250 miles (400 kilometers) per hour.

Meteorologists study the polar-front jet stream as they forecast weather. Changes in it indicate changes in weather. The jet stream is also of importance to aviation, as the B- 29 pilots quickly found out. Westbound high-altitude flight routes are planned to avoid the jet-stream head winds. Eastbound flights welcome the time-saving tail winds. However, the jet stream produces strong wind shears in some locations because of large changes in wind speeds over short vertical and horizontal distances. The resulting air turbulence can be very hazardous to aircraft.

The polar-front jet stream’s location is one of the most influential factors on the daily weather pattern across the United States.

Characteristics of the Polar-Front Jet Stream

  1. Jet streams are relatively high speed west-to-east winds concentrated as narrow currents at altitudes of 6 to 9 miles (9 to 14 kilometers) above sea level. These meandering “rivers” of air can be traced around the globe in segments thousands of kilometers long, hundreds of kilometers wide and several kilometers thick.
  2. Two high-altitude jet streams affect the weather of middle latitudes; they are the subtropical jet stream and the polar-front jet stream.(Latter only present in winter)
  3. The subtropical jet stream is located between tropical and middle latitude atmospheric circulations. Although not clearly related to surface weather features, it sometimes reaches as far north as the southern United States. It is an important transporter of atmospheric moisture into storm systems.
  4. The polar-front jet stream is associated with the boundary between higher latitude cold and lower latitude warm air, called the polar front. Because of its link to surface weather systems and features, the polar-front jet stream is of special interest to weather forecasters.It defines the position of polar cyclones.
  5. The polar-front jet stream is embedded in the general upper-air circulation (including the stratosphere) in the middle latitudes where winds generally flow from west to east with broad north and south swings. As seen from above, these winds display a gigantic wavy pattern around the globe.
  6. The maximum wind speeds in the polar-front jet stream can reach speeds as high as 250 miles (400 kilometers) per hour.
  7. The average position of the polar-front jet stream changes seasonally. Its winter position tends to be at a lower altitude and at a lower latitude than during summer.
  8. Because north-south temperature contrasts are greater in winter than summer, the polar-front jet stream winds are faster in winter than in summer. (the presence of very cold mesospheric air above about 300 hPa, over the pole, increases density)
  9. Small segments of the polar-front jet stream where winds attain their highest speeds are known as jet streaks. Across the United States, one or two jet streaks are commonly present in the polar-front jet stream.

What Causes the Polar-Front Jet Stream?

  1. Fundamental to the formation of the polar-front jet stream is the physical property that warm air is less dense than cold air when both are at the same pressure. (Lets be very clear here: The term ‘pressure surface’. i.e. the 200 hPa pressure level is more appropriate than ‘pressure’. An alternative expression is: The geopotential height of a pressure surface is greater on the equatorial side of the polar front than the polar side OR  Air has lower density at  jet stream altitudes on the equatorial side of the polar front OR The tropopause does not exist on the polar side of the polar front and is very low on the equatorial side bringing warm ozone rich air in contact with very cold, dry, dense air of mesospheric origin.)
  2. 11.The polar-front represents the boundary between higher latitude cold air and lower latitude warm air. This temperature contrast extends from Earth’s surface up to the polar-front jet stream altitude.  (In fact  the temperature contrast is maintained to the top of the atmosphere but the mixed air interface  broadens with elevation .  At the surface the core of a polar cyclone is cold in relation to the surrounding air. At 250 hPa the core of a polar cyclone is warm in relation to the surrounding air and it is the contrast in density at this level that energises the wind. The Jet stream links polar cyclones giving rise at the 200 hPa level, but higher or lower depending on the season, to a relatively unified stream of rapidly rotating air that takes ozone rich air to the top of the atmosphere. It  might be compared to a chimney except that it is annular in shape with a hole of inactive air in the middle. That chimney is therefore like no other because it surrounds a core of cold mesospheric air. It is the conjunction of the core of relatively very cold air and the warmer and ozone rich air that surrounds it that gives rise to the most vigorous ascending circulation on the planet. This circulation ascends to the top of the atmosphere. It  originates in the vicinity of the tropopause on the equatorial side of the front and pulls in air from the troposphere. Cold air from the Antarctic side and warmer air from the tropical side is entrained in the ascending spirals that represent an amorphous ‘Front’, quite a different concept to what is referred to as a warm or cold front in the mid latitudes. It is from this zone of ascending  air that the global circulation is driven, not the tropics.)
  3. Air pressure is determined by the weight of overlying air. In the vicinity of the polar front, air pressure drops more rapidly with an increase in altitude in the more dense cold air than in the less dense warm air. ( very confusing statement. Reduced air density aloft applies not to the cold air from the mesosphere but the air that contains ozone on the tropical side of the front. This reduced density is due in part to the origin of the air (its from temperature regions)  and also to ozone heating of the air as it absorbs long wave radiation from the Earth and instantly and continually passes that energy on to adjacent molecules. The energy stream, unlike that from the sun, is available continuously day and night. The energy so acquired destabilises the atmosphere and this situation is resolved by movement.The polar front, that is properly considered as a stratospheric phenomenon because that is where the contrast manifests, is the strongest ascending air stream on the planet. Its importance in determining the distribution of atmospheric mass and therefore the planetary winds has yet to be realised by mainstream climate science.)
  4. The effect of temperature on air density results in air pressure at any given altitude being higher on the warm (equatorward) side of the polar front than on the cold (poleward) side. (This statement would be more meaningful if couched in terms of differences in air density in this form: The effect of temperature on air density results in air density at any given altitude being less on the warm, equator-ward side of the polar front than on the cold, pole-ward side.).
  5. When cold and warm air reside side by side, the higher the altitude the greater the pressure difference is between the cold and warm air at the same altitude. (This statement would be more meaningful if couched in terms of differences in air density as in:  At the polar front  the the temperature and density difference increases with altitude.).
  6. Across the polar front, at upper levels (including the jet stream altitude), horizontal pressure differences cause air to flow from the warm-air side of the front towards the cold-air side of the front. (Horrible. Rephrase as: Enduring horizontal density differences result in the ascent of air of lower density being driven upwards to the top of the atmosphere.)
  7. Once air is in motion, it is deflected by Earth’s rotation (called the Coriolis effect). Upper-level air flowing poleward from higher pressure towards lower pressure is deflected to the right in the Northern Hemisphere (or to the left in the Southern Hemisphere). The result is a jet stream flowing generally towards the east, parallel to, and above the polar front.(Deeply unsatisfying statement. The atmosphere super-rotates in the same direction as the Earth rotates on its axis but faster. The speed of its rotation increases in winter. The speed of rotation increases from the equator to the polar front. Its speed of rotation increases from the surface into the upper stratosphere but falls away at the highest elevations as the diameter of the cone of spinning air increases to take in the mid latitudes. There are discontinuities in this stream of ascending air due to locally enhanced ascent where sticky low pressure cells form on the lee of the continents where warm waters in the ocean promote the formation of low pressure cells of ascending ozone rich air. This results in pockets of ozone rich air at 1 hPa above these centres of local ascent. A collapse in the descent of atmospheric air over the pole (as in summer) allows these centres of local ascent to flood into the region of the polar cap or across it completely reversing the west to east flow so that it then flows weakly east to west, the summer pattern. This is perceived as a sudden stratospheric warming. It represents the replacement of one species of air with another.)

Relationships between the Polar-Front Jet Stream and Our Weather

  1. The polar-front jet stream exists where cold air and warm air masses are in contact. Hence, your weather is relatively cold when the polar-front jet stream is south of your location and relatively warm when the jet stream is north of your location.
  2. The polar-front jet stream can promote the development of storms. Storms are most likely to develop under a jet streak.
  3. As a component of the planetary-scale prevailing westerly circulation, the polar-front jet stream steers storms across the country. Hence, storms generally move from west to east.

Authors further remarks:  

There is a confusion in the AMS account  as to the location of warm and cold air and also due to the use of the term ‘pressure’ for air at altitude rather than ‘density’. There is also a loose use of the term ‘Polar Front’ that properly applies to the stratosphere rather than the troposphere where the front is actually a chain of massive polar cyclones that can occupy many parallels of latitude.  And most unfortunately there is a lack of appreciation of the origin of the phenomenon in the stratosphere where the energy to drive the circulation is acquired  in part via the agency of ozone.

The archetypal instance of this circulation lies not in the Arctic but the Antarctic where the patterns are much simpler than in the northern hemisphere and it is the latter circulation that I refer to in the comments below.

The annular nature of the zone of uplift that constitutes the polar arm of the jet stream  is due to the almost complete chain of polar cyclones that surround the Antarctic continent.  Ascent in this column of air that surrounds a tongue of mesospheric air  in the stratosphere is balanced by descent in the mid latitudes and also over the pole. Descent is a gentle affair because the areas available for descent are expansive by comparison with the zones of ascent. It is only by restricting the flow through a small orifice that one can increase the speed of the flow, a concept that many gardeners and fire-fighters will be familiar with.

The near surface feed that is the westerlies in the southern hemisphere is extremely vigorous reflecting a strong pressure differential between the rest of the globe and the circumpolar trough that extends from about 50° of latitude to about 70° of latitude. The air streams converge at higher latitudes speeding up as they do so, only by much increased wind speed at elevation.

The names that sailors used to describe the surface winds indicate the increase in wind speed at high latitudes. We have the Roaring Forties, The Furious Fifties and The Screaming Sixties. Convergence at high latitudes requires rapid modes of ascent (in this case to the top of the atmosphere) and an equally large return flow  at elevation but spread over a very wide surface area because it is returning to the wider circumference of the mid latitudes. How does the hypothetical Brewer Dobson circulation fit into this scenario: In short, it doesn’t. The flow to high latitudes is not in the stratosphere, it is in the troposphere and that air is cold, dense and ozone deficient.

The Brewer Dobson Circulation was proposed as a hypothesis, not an observation, in order to explain elevated ozone partial pressure and a descending tropopause in higher latitudes. Another hypothesis is that ozone persists due to reduced pressure of ionisation due to low sun angle. However ozone partial pressure continues to increase as the sun rises higher in the sky and the stratosphere begins to warm in spring suggesting that synthesis of ozone due to ionisation by cosmic rays is the most likely explanation for the elevated ozone content of the air in spring. In any case in my, admittedly limited, experience it is not possible for a flow of tepid water to produce a warm bath.

A positive pressure differential exists between the Rest of the World  and the area dominated by polar cyclones at 60-70° south. This gives rise to intermittent flows of warm moist air that move counter to the trade winds from strong centres of evaporation near the equator. This warm moist air has little ozone because it comes from below the elevated tropical tropopause. It is drawn into the polar circulation. It’s moisture content enhances the vorticity of polar cyclones but only on the external margins where small scale fronts form so that the core of a polar cyclone is dry. Tropical air from under the tropopause is  very cold, at a temperature of -80°C, as cold as air from the mesosphere. It has a very low ozone content and a high NOx content . At 100 to 50 hPa  tropical air is dense tending to settle rather than be drawn into ascent. At the time of the final warming of the stratosphere from August through to December this air enters the space formerly occupied by mesospheric air giving rise to a pronounced ‘ozone hole’ below 50 hPa. Other than during the period when this ozone hole manifests the air from the mesosphere, although relatively ozone deficient by comparison with the air on the other side of the vortex has more ozone due to ‘spill in’ mixing during descent.

The descent of mesospheric air over the pole in winter is relatively slow, tenuous and easily interrupted. It can be interrupted if  surface pressure falls away as it does in summer.  Surface pressure can fall away in winter if ozone is generated by cosmic ray activity or the electromagnetic activity of the solar wind slows the zonal wind. Hence the stratospheric sudden warming phenomenon where warm air replaces cold. 

Relatively low pressure is endemic in the Arctic inhibiting the entry of a tongue of mesospheric air. In Antarctica, by contrast the ice mound and the vigour of polar cyclone activity over the surrounding ocean ensures that there will always be descent in the mid latitudes and also over the Antarctic continent and the ice that prevails in winter. In winter, beginning in March and enduring till November there is to some extent a persistent tongue of mesospheric air that penetrates to the 300 hPa level.

There is no recognition in the (admittedly outdated) analysis from the American Meteorological society of the role of ozone in giving rise to  increasing contrasts in air density aloft. So the article, while it is rich in rules of thumb and observation of the nature of the Jet Stream actually fails to address the physical forces that are responsible for the Jet stream.

Without a realisation of the role of ozone in enhancing the density differences across the polar front that results in 1. polar cyclones and 2. shifts of atmospheric mass, the source of natural climate change must remain inexplicable. This is the current situation. The prevailing mindset is incapable or unwilling to conceive that the climate system may be subject to external influences. An item of faith is involved. Man is stained with original sin and atonement is required.  All interpretation is tuned to that end. We have been taken back to the middle ages. The only other interpretation is that men are weak and follow the money dished out by elites who have a warped view of nature and the place of humanity within nature.

Is ozone a greenhouse gas or is it not! Is it responsible for the warmth of the stratosphere? Does it collect energy and transmit that energy to adjacent molecules. If it does, then it must warm the air that accordingly loses density and that air is displaced at a rate that reflects the efficacy of the warming process. The observed phenomena reflect the mode of causation and amply indicates the energy that is required to drive the process. This process is continuous. It’s never exhausted. It requires continual input of energy to sustain it. That energy is applied to the atmosphere, not in low latitudes but in high latitudes per agency of ozone via its ability to pass on the energy that it acquires from the Earth itself.

Above 500 hPa the air circulates west to east in both hemispheres all year round. The stratosphere in the winter hemisphere is a very  vigorous medium. The source of its vigour relates to its unique atmospheric composition….the presence of ozone at a greater partial pressure than in summer time.  To account for this there is the relative absence of photolysis in winter and the possible involvement of cosmic rays in the generation of ozone in high latitudes. The increase in the density differential across the polar front in winter is in part due to the descent of cold mesospheric air over the polar cap. In spring the increase in the density differential is due to ozone synthesis and also the erosion of ozone below 50 hPa by NOx from the troposphere that is trapped in the lower atmosphere during the final warming of the stratosphere. Once accomplished the warming results in a complete reversal of rotation aloft.  At the time when the ozone hole appears surface pressure at 60-70° south latitude reaches its annual minimum. This is also the time of the year when a warming of the stratosphere will facilitate the penetration of cosmic rays. The solar cycle modulates the interplanetary environment in such a way as to preclude cosmic rays when solar activity is strong.

The failure of climate science to get to grips with the physics of the atmospheric circulation in high latitudes and in particular to realise that convection at the pole is driven from the upper atmosphere is a terminal fault that leaves the stage open for the AGW argument. Prevailing modes of thought lack focus on mixing processes that involve the entire atmospheric column that are initiated above 500 hPa in the winter season. At the root of the problem is an inability to observe, a fondness for dogma and a simple follow the leader mentality that reminds one of the Medieval Church. Today, the centres of scholarship are funded by governments and dependent on the opinions of the governing elites. Our elites are about as sensible as the Medieval Popes. Nobel winner Al Gore is the titular head of this church. Barack Obama is a very funny man, perhaps he is the Court Jester.

 We need to see atmospheric processes in terms of cause and effect based on an appreciation of gas behaviour. Otherwise we are limited to correlative prediction based on primitive rules of thumb like the following:

  1. If you stand with your back to the wind, and the air is colder to the left and warmer to the right, the wind will get stronger on your back as you ascend in the atmosphere
  2. Storms are most likely to develop under a jet streak.
  3. The polar-front jet stream steers storms across the country. Hence, storms generally move from west to east.

The poverty of climate science when it comes to understanding cause and effect is abundantly evident.

It has long been known that there is an association between the Arctic Oscillation Index and geomagnetic activity that is the product of the interaction of the solar wind with the atmosphere. This is a no-go area in climate science.  Why?

A comment about the composition of the journal ‘Science’that appeared here is apt:

Willis back in the early 80’s when I first began to take an interest in Global Warming. I depended on “Science” to give me a picture of the development of the research. In those days, about one in three articles were about natural causes of warming. It seemed at the time that the natural trend articles tended toward the more serious considerations. I thought, well science will sort it out and over the next few decades, and I can sit back and watch it unfold. Well, that was back when Philip Abelson was the Editor, he lost that position which, according to an interview I read at the time, he said was primarily because of his changing position on Global Warming. As the portrait in Wikipedia says “Some have claimed him to be an early skeptic of the case for global warming on the basis of a lead editorial in the magazine dated March 31, 1990 in which he wrote, “[I]f the global warming situation is analyzed applying the customary standards of scientific inquiry one must conclude that there has been more hype than solid fact.” ”https://en.wikipedia.org/wiki/Philip_Abelson Subsequent to his replacement “Science” no longer entertained contrarian views. He was the first scientist I knew who lost his position because of the Climate agenda.

 

Readers interested in the history of how the global warming scare came to be will be interested in Bernie Lewin’s analysis here.

There is also an excellent study by Michael Hart in his book Hubris: ‘The troubling science, economics and politics of climate change’.

Heresy and orthodoxy

Overnight, I have a comment on my Chapter 3 from none other than Anthony Watts. ‘What an atrocious article’. Anthony has certainly nailed his colours to the wall with that comment. What is he on about? I reply below:

This post is an impromptu based upon some interesting material that turned up in a search on the words: ‘ozone surface pressure’ the day before yesterday.

In 1968 Gordon Dobson, the man measured the quantity of ozone in the stratosphere and revolutionized our understanding of the middle atmosphere  reviewed his life’s work (see here:  http://esrl.noaa.gov/gmd/ozwv/dobson/papers/Applied_Optics_v7_1968.pdf) and wrote the passage italicised below that gives a good indication of the methodical approach that the man had to his work. The wartime government in the UK was concerned that aircraft contrails were giving information to the enemy about aircraft movements and his task was to measure the amount of water vapour in the air where these aircraft flew. But his enduring interest was to discover the nature of the atmosphere and the drivers of surface weather because he was a meteorologist :

The wartime measurements of the humidity of the upper atmosphere, showing that the stratosphere is very dry, were of interest in relation to the question of the equilibrium temperature of the stratosphere. The temperature of the stratosphere was generally regarded as being controlled by the absorption and emission of longwave radiation, the chief absorbing gases being water vapor, carbon dioxide, and ozone. If the air in the stratosphere were nearly saturated with water vapor, then water vapor would far outweigh the others in importance. When it was found that the stratosphere only contained a few percent of the water vapor required to saturate it, the picture appeared quite different and the three gases appeared to be of equal importance in determining the temperature of the stratosphere. Another interesting result to come out of the measurements with the frost point hygrometer was that there were often layers of very dry air quite low down in the troposphere, which must have descended from high in the troposphere if not from the stratosphere. The results of this wartime work were presented in the Bakerian Lecture of the Royal Society for 1945.

Dobson lectured in meteorology at Oxford. A biography of Dobson is provided by University of Oxford Department of Physics at:
https://www2.physics.ox.ac.uk/research/atmospheric-oceanic-and-planetary-physics/history/biography-dobson

There,  you will find this statement:

Dobson inferred correctly that the cause of the warm stratosphere was heating by the absorption of ultraviolet solar radiation by ozone,

Longwave radiation is not ultraviolet radiation.

Apart from being a direct contradiction of what Dobson had written in 1968 the notion that the stratosphere owes its temperature to interception of short wave ultraviolet light is nonsense and you must ask yourself why the person writing Dobson’s biography should take that diametrically opposed position. Anyone who thinks about it for a moment will decide that Dobson is right and his biographer wrong. If short wave radiation were responsible for the heating of the stratosphere it would be warmest over the equator. The stratosphere is a markedly heterogeneous medium in terms of its ozone content and in high latitudes during winter there are relatively warm parcels of air that are well out of the reach of short wave solar radiation. The only form of energy available to these parcels is outgoing long wave. Ozone rich air gets warmer. If short wave energy were the only form available to heat ozone there would be very little differentiation in the temperature of the stratosphere in winter and meteorologists would not be setting up this website to study the variations in ozone content, atmospheric temperature and geopotential height in high latitudes :  http://www.cpc.ncep.noaa.gov/products/stratosphere/

Between 200 hPa and 10 hPa we have 20% of the atmosphere. Above 10 hPa we have just 1% of the atmosphere of which the stratosphere takes up the interval to 0.1 hPa. Above o.1 hPa we have just 0.01% of the atmosphere and none of it is classified as stratosphere. Short wave solar radiation contributes strongly to the heating of the stratosphere above 10 hPa. Long wave radiation from the Earth contributes to the heating of the stratosphere throughout, and into the mesosphere as well. If you must choose one of these sources of radiation as being dominant it is the latter.

Dobson spent most of his life in the field of optics (generation, propagation, and detection of electromagnetic radiation) and in manufacturing instruments to measure the energy in short wave spectra. His spectrophotometer selected out the wave length that is absorbed by ozone in the the process of its destruction in the stratosphere and compared that to wave lengths unaffected by their passage through the atmosphere and the ratio between the two enabled him to infer the quantity of ozone in the atmospheric column. The use of his instrument  resulted in major advances in our understanding of the atmosphere. He manufactured these instruments in a garden shed at his home. Later when the instruments were manufactured by others every one of them was brought to his garden shed for calibration against his original Dobson Meter Number 1.

Dobson was an expert when it came to the difference between short wave ionising radiation coming from the sun and long wave coming in the main from the Earth itself.

If you take the position that the stratosphere is heated by short wave incoming radiation alone, you deny that ozone is a greenhouse gas. You deny that it absorbs at 9-10 micrometres, a wave length that lies in the peak of the earth’s spectrum of infra-red emission and you deny that it can be responsible, via its effect on the density of the upper atmosphere for variations in surface pressure. AND THAT IS THE ENTIRE POINT.

Dobson who had worked briefly at the Eskdalemuir Geomagnetic Observatory in Scotland  wrote as follows in the same report:

Chree,’ using the first year’s results at Oxford had shown that there appeared to be a connection between magnetic activity and the amount of ozone, the amount of ozone being greater on magnetically disturbed days. Lawrence used the Oxford ozone values for 1926 and 1927 and in each year found the same relation as Chree had done. However, when he used the average ozone values for Northwest Europe-which should be less affected by local meteorological conditions-he found no relation at all, so it was concluded that both Chree’s results and his earlier ones had been accidental. This investigation has never been repeated.

And the decision to close off that particular line of investigation was designed to effectively shut the door on inquiries designed to ascertain if there existed a link between the solar wind and the flux in surface pressure at the surface of the Earth via the impact of the solar wind on the electromagnetic medium that is the upper atmosphere. There are false trails in science but people like Dobson don’t go to the trouble of mentioning them. There is an air of regret in the last sentence of that paragraph: This investigation has never been repeated.

This sort of obfuscation and denial is rife in the world of climate science as it is carried on in academic institutions and the IPCC where Dobsons successor in atmsopheric science at Oxford was the lead author of the first three IPCC reports . Though it may have been possible to shut down this type of inquiry at Oxford it continues elsewhere and the evidence of the link between atmospheric pressure and geomagnetic activity continues to accrue.

In his 1968 summary of his life’s work Dobson wrote this about his very early observation that Total Column Ozone mapped surface pressure:

At this time it was well known from the work of Dines and others that the stratosphere was warmer in cyclonic conditions and colder in anticyclonic conditions, and Lindemann also suggested that these differences of temperature might be due to different amounts of ozone in the stratosphere-cyclonic conditions having much ozone and anticyclonic conditions little ozone. It also seemed just possible that cyclones and anticyclones might be actually caused by different amounts of ozone in the upper atmosphere. We know now that there is, indeed, more ozone in cyclonic conditions than in anticyclonic conditions but that this is not the cause of the different pressure systems.

When I read this paragraph I see arm twisting going on and Dobson resisting. He takes every opportunity to suggest that ozone drives surface pressure, repeatedly states the connection, reminds people that Lindemann thought that ozone drove temperature (and therefore density) and then, surprisingly, in the last dozen words he capitulates.

Dobson had a position at Oxford University that was no doubt important to him. My guess is that he was being leaned on  by  people who were dead set on pushing a different narrative. These people were well aware that if surface pressure were to be seen to be dependent upon the ozone content of the upper half of the atmospheric column it would spoil their narrative and they prevailed upon him to alter his words accordingly.

Tell me this: if the presence of ozone in the upper half of a column of ascending air is not the cause of low surface pressure then, by what process can ozone enter a column of ascending air that draws its air from the lower atmosphere that is ozone deficient?

The narrative that denies ozone a role in determining surface pressure requires strict separation of a ‘troposphere’ from a ‘stratosphere’ so that convection in low pressure cells is limited to the troposphere. In point of fact cyclogenisis (indicated by the wind strength and enhanced density differential) increases from the surface into the stratosphere in a polar cyclone. The geopotential height anomaly associated with the Annular Modes that represent the shift in surface pressure between high latitudes and the rest of the globe is greatest in the stratosphere.

My long post Chapter 4  makes the exact same point as the last paragraph by examining the temperature profile of each latitude band between the inter-tropical convergence and 90° south.

“It would not be impossible to prove with sufficient repetition and a psychological understanding of the people concerned that a square is in fact a circle. They are mere words, and words can be molded until they clothe ideas and disguise.”
Joseph Goebbels

“That propaganda is good which leads to success, and that is bad which fails to achieve the desired result. It is not propaganda’s task to be intelligent, its task is to lead to success.”
Joseph Goebbels

If ordinary people can not be a little more intelligent the forces of darkness will prevail. For humanity’s sake, get angry. Do not let people who follow in Goebbel’s footsteps push you around.