Confirmation

Capture

From

Journal of Atmospheric and Solar-Terrestrial Physics

Volumes 90–91, December 2012, Pages 9-14
  • National Institute of Geophysics, Geodesy and Geography, Bulgarian Academy of Sciences, 3 G. Bonchev, Sofia, Bulgaria
Abstract

The strong sensitivity of the Earth’s radiation balance to variations in the lower stratospheric ozone—reported previously—is analysed here by the use of non-linear statistical methods. Our non-linear model of the land air temperature (T)—driven by the measured Arosa total ozone (TOZ)—explains 75% of total variability of Earth’s T variations during the period 1926–2011. We have analysed also the factors which could influence the TOZ variability and found that the strongest impact belongs to the multi-decadal variations of galactic cosmic rays. Constructing a statistical model of the ozone variability, we have been able to predict the tendency in the land air T evolution till the end of the current decade. Results show that Earth is facing a weak cooling of the surface T by 0.05–0.25 K (depending on the ozone model) until the end of the current solar cycle. A new mechanism for O3 influence on climate is proposed.

 

Comment

I disagree with the authors interpretation of the mechanism involved that is described in part as:  increase or decrease of the greenhouse effect, depending on the sign of the humidity changes. 

More simply, the Earths radiation balance is much affected by the degree to which incoming radiation is reflected by cloud cover.

I maintain (suggest is too weak a word) that ozone as an absorber of outgoing radiation by the Earth, radiation continuously, day and night,  impacting the temperature and relative humidity of the highly reflective ice-cloud-zone that is found from a couple of kilometres above the surface of the Earth unto the limits of the ‘weather-sphere’. The weather-sphere, I would describe as the zone that contains sufficient water vapour to promote the appearance and disappearance of  minute, highly reflective, multi-branching  (like the international space station) crystals of ice.

Ice crystals reflect and scatter incoming radiation,

There is no need to invoke carbon dioxide or its increasing presence in the atmosphere, or the notion of a greenhouse effect, to explain surface temperature variations. Insofar as carbon dioxide promotes the growth of vegetation and increases the mass of water in the hydro logic cycle it will promote humidity and the formation of more cloud.

The atmosphere ejects heat by virtue of convection. It lacks any of the properties of a greenhouse. The tragic failure of climate science, in the face of overwhelming evidence to the contrary, is to misunderstand the physics of the atmosphere.

The wilfulness of ignorance and the determination to hang on to old dogma is astounding: this paper appeared in 2012.

Advertisements

Reflection of sunlight from cloud at 5-8km in elevation (Cirrus).

https://earthobservatory.nasa.gov/IOTD/view.php?id=90269&src=eoa-iotd

Quote:

The EPIC data also helped confirm that the flashes are coming from a high altitude, not simply water on the ground. Two channels on the instrument are designed to measure the height of clouds. According to the observations, high cirrus clouds—5 to 8 kilometers (3 to 5 miles) up in the atmosphere—appeared wherever the glints were located.

“The source of the flashes is definitely not on the ground,” Marshak said. “It is definitely ice, and most likely solar reflection off of horizontally oriented particles.”

Marshak is now investigating how common these horizontal ice particles are, and whether they are common enough to have a measurable impact on how much sunlight passes through the atmosphere. If so, it is a feature that would need to be incorporated into computer models of how much heat is reaching and leaving Earth.

Perhaps we should admit that it will take time to get ‘the science’ properly settled.

There is a notion in IPCC  ‘climate science’ that high altitude cloud has a warming influence on the surface.    A manurial notion if ever there was one.

As to whether there will be ice cloud at elevation or not….then the ozone content of the air will be a factor of importance because ozone absorption of infrared from the Earth itself determines air temperature and therefore relative humidity and the degree and extent of precipitation.

Progress

If one appreciates the way in which the planet has warmed in some places and not in others, the way it warms in winter rather than in summer, the way it warms in fits and starts then, the thesis that the warming relates to the steadily increasing proportion of so called ‘greenhouse gases’ in the atmosphere must be seen to be implausible. If one appreciates that the high latitudes of the southern hemisphere are cooler today than seven decades ago, then it is obvious that there are more influential factors at work. If one appreciates that the entire southern hemisphere is no warmer today in the month of December than it was in the nineteen fifties then a sensible person would have to conclude that something other than the ‘enhanced greenhouse effect’ is at work. The  change in surface temperature is plainly not due to enhanced back radiation alone, if at all.

Indeed there are natural factors at work that have nothing to do with the activities of man. THE FUNDAMENTAL modes of natural climate change have been termed the Northern Annular Mode and the Southern Annular Mode. These modes involve shifts in atmospheric mass from high to mid and low latitudes and across the hemispheres accompanied by change in surface pressure, the winds and surface temperature.

Surface pressure simply reflects the total ozone content of the atmospheric column, an identity that was discovered more than 100 years ago. Ozone is material to the presence of what we call the stratosphere. It is change in the ozone content of the stratosphere that is responsible for change in surface pressure, surface winds, sea surface and air temperature.

I abandoned this blog for months while engaged in a project that demanded my full attention. During this period the election of Trump to the presidency of the USA and the appointment of men who understand that cheap and reliable energy is a requirement for economic growth and sustained living standards has led climate realists to think that the tide of manipulation designed to promote the idea of  ‘renewables’ will been turned back and we can at last relax.

The last few days have been spent on the flat of my back. With little else to do I went to Google to discover whether any progress has been made in explaining the role of the annular modes …and indeed there has, but in Beijing, not in Washington or Colorado.

I direct the reader to this page: http://ljp.gcess.cn/dct/page/65558

It is a treasure trove of useful observation and deduction.

A paper published in December 2016 is of the first importance

Xie, F., J. Li*, W. S. Tian, Q. Fu, F. F. Jin, Y. Y. Hu, J. K. Zhang, W. K. Wang, C. Sun, J. Feng, Y. Yang and R. Q. Ding, 2016:A connection from Arctic stratospheric ozone to El Niño-Southern oscillation. Environ. Res. Lett., 11, doi:10.1088/1748-9326/11/12/124026.

The paper can be accessed here: http://ljp.gcess.cn/thesis/files/Xie_2016_Environ._Res._Lett._11_124026.pdf

What is known as the El Nino Southern Oscillation represents the most spectacular manifestation of surface temperature change. This phenomenon has been described as an ‘oscillation’ that is said to be internal to the climate system. Not so. It has its origin in change in the stratosphere in high latitudes that is the subject of previous chapters in this blog. The most dramatic swings in the ozone content of the stratosphere occur in the northern hemisphere in winter.The poles are where climate change is initiated.

The authors conclude that: ‘understanding this kind of connection and potential feedback between the stratospheric tracer gases (such as ozone) and the climate system deserves more attention.’

I concur.

It’s one thing to identify the chain of causation and another to understand and explain the physical processes behind it. It’s yet another to explain how and why ozone varies in the polar stratosphere and to explain the drivers that operate in the upper atmosphere where the Earth system is a part of the interplanetary environment. This is the real frontier in climate science.

There is no great urgency to discover and describe the mechanisms involved, no pressing need for massive funding unless humanity is led astray by false prophets. We can expect that those who have a vested interest in continued funding of their ‘global warming’enterprise will put up vociferous arguments to try and justify their claims. End of the day, the voters decide how their taxes are spent and it appears that, when offered a clear alternative, voters can work out when they are being ‘had’ and adjust accordingly. It’s possible to fool some of the people some of the time but not all of the people all of the time.

Let’s hope the tide has turned.

Its a worry that ‘global warming’ hysteria got as far as it did and did as much damage as it did before people woke up to what has been happening.

42 THE WARMING OF THE INDIAN OCEAN. THE CANARY IN THE COAL MINE

CAUSE OF WARMING

In general the planet warms as surface pressure increases in low and mid latitudes.

The chain of causation runs like this: Increased surface pressure is associated with increased geopotential height, extra warmth in the atmospheric column and a consequent reduction in the quotient of moisture held in the very expansive ice crystal form. As cloud cover diminishes more solar radiation reaches the surface of the planet. When energy is absorbed by the ocean it is stored to depth and, by virtue of ocean currents, re-distributed, fortuitously warming those parts that receive little solar energy.

In contrast, when solar energy falls on land it is swiftly, in the main overnight, returned to the atmosphere. The warming of the atmosphere that is occasioned in northern summer, due to the extensive land masses of that hemisphere,  results in a global deficit of cloud cover in the middle of the year producing the annual maximum in planetary temperature when the Earth is furthest from the sun and solar irradiance 6% diminished by comparison with January.  It should be obvious (how did climate scientists miss this?) that the primary dynamic determining surface temperature is the temperature of the atmosphere in relation to the moisture that it contains.

REDISTRIBUTION

Please inspect the map below. The planetary winds drive ocean currents that mix cold waters from high latitudes and the ocean deep into the warm waters of the tropics. This is evident on the eastern margins of the oceans and particularly so in the southern hemisphere. The Indian Ocean is the odd man out with a weak cold current on its western margins and a warm, southward travelling, current on its eastern margin. The consequence is a relative backwater that is less  affected by the mixing of cold with warm water.

global-sst

It follows that the circulation of the oceans results in a very different thermal regime in each basin according to the  the ocean currents that are primarily driven by the winds. As the winds evolve, so do the currents.

The table below documents the extent of the temperature increase  over the last 68 years according to latitude and longitude in the three major ocean basins. For economy I focus on those latitudes that are warm enough to be relatively hospitable  to man.

sst-in-numbers

It is obvious that the bulk of the Pacific Ocean has not warmed to the same extent as the Indian and Atlantic Oceans. In terms of basin averages, in January the Indian Ocean has warmed by 0.87°C, The Pacific by 0.42°C and the Atlantic by 0.46°C. In July the Indian has warmed by 0.84°C the Pacific by 0.12°C and the Atlantic by 0.6°C. It is in July that the contrast between the oceans is strongest.It is the Indian Ocean that has warmed to the greatest extent.

THE SURFACE PRESSURE DYNAMIC

annual-slp

If we are to understand the differences in the rate of warming of the Ocean basins we need to comprehend to role of polar cyclones in high latitudes. Enhanced polar cyclone activity in the Antarctic circumpolar trough (red and orange in the map above) has, over the period of record, shifted atmospheric mass into low and mid latitudes from latitudes south of the 50° parallel. In consequence the high latitude west wind drift that is coextensive with the circumpolar trough, that drives cold water into the tropics, has accelerated. The flow is restricted at the Drake Passage between the Pacific and the Atlantic. Accordingly the Pacific Ocean cooled in parts and generally warmed at a much reduced rate when compared to the Indian and Atlantic Oceans.

drake-passage

The Indian Ocean is like the canary in the coalmine, a companion to the miner to warn him of a change in the quality of the air. The evolution of surface temperature in the Indian Ocean offers a glimpse of unfettered reality in terms of the march of surface temperature across the globe as it is forced by change in cloud cover associated with shifts in atmospheric mass and the change in the planetary winds.

The remainder of this chapter explores the shift in atmospheric mass from high southern latitudes and its relationship to surface pressure in the rest of the globe and the Indian Ocean in particular.

The discussion is is not based on the hypothetical constructs of a climate model or the abstruse mysteries of so called ‘planetary forcings’.  Rather it is grounded in observation and measurement based on data as  presented in the reanalysis work of Kalnay et al accessible here.

The graph below represents the evolution of surface pressure in the Indian Ocean south of the equator.We must to answer the question: Why is it so?

slp-indian-ocean-south-of-equator

WHY WORRY

The entire southern hemisphere has not warmed in the month of December in the last 68 years. If surface temperature were being forced by increased back radiation from the atmosphere the southern hemisphere should warm in all months.  There is no reason to expect the degree of warming due to a hypothetical increase in back radiation to be different in one month to another.  We therefore discard the hypothesis that temperature at the surface is driven by the carbon dioxide content of the atmosphere.  We look for other mechanisms to explain the flux in surface temperature. Radiation theory is all very well but in the real world, inoperable. The concept of anthropogenic warming is a distraction from fairyland. We can, to advantage, be more discriminating in what we choose to believe.

SURFACE PRESSURE DYNAMICS

sh-high-lat-surface-pressure
Figure 1 Sea level pressure in the region of the Antarctic circumpolar trough compared to sea level pressure in the entire region south of 50° south latitude.

Figure 1 compares the evolution of sea level atmospheric pressure in the Antarctic circumpolar trough to all latitudes south of 50° south. It is plain that the relatively short term fluctuations in surface pressure in the larger entity are greater than in the ‘trough’. In point of fact the trough expands and contracts across the parallels affecting surface pressure in adjacent latitudes and in particular across the Antarctic continent. The agent of change is polar cyclone activity that is energised by differences in atmospheric density between very different parcels of air that meet in the region of the trough in the very broad interface between the stratosphere and the troposphere between about 400 hPa and 50 hPa. It is in this region that the strongest winds are to be found. Polar cyclones are generated aloft. This is the nature of the ‘coupling of the troposphere with the stratosphere’, a concept that is a postulate of conventional climate science but remains a mystery so far as its modes of causation is concerned. If one is wedded to radiation theory it limits the mind.

slp-50-90-s-and-90n-to-50s
Figure 2 twelve month moving averages of sea level pressure either side of the 50° south latitude band encompassing the globe as a whole.

In figure 2 we compare the evolution of surface pressure south of the 50° south  parallel of latitude with surface pressure north of that same parallel. If the total mass of the atmosphere were to be invariable we would expect a strictly reciprocal relationship. As pressure falls on one side of the 50th parallel it should rise on the other. Plainly, the increase, decrease and subsequent increase in surface pressure in concert, between 1948 and 1964, is evidence of a planetary evolution in the quantum of atmospheric mass perhaps associated with enhanced loss in very active solar cycles and incremental gain in quiet cycles. That is a subject for another day.

Plainly, since 1964 it is the reciprocal transfer relationship that dominates. When atmospheric mass is lost south of the 50th parallel it moves north the 50th parallel and vice versa.This process of exchange is referred to as the Antarctic Oscillation.

slp-indian-versus-90n-50s
Figure 3

In figure 3 we compare the evolution of surface pressure in the Indian Ocean south of the equator through to 30°of latitude with that north of the 50th parallel.

indian-versus-90n-70-50s-two-axis
Figure 4

Figure 4 presents the same information as in figure 3 but on two axes with independent scales. It’s plain that broadly speaking the Indian Ocean south of the equator gains and loses atmospheric mass in parallel with all points north of the 50th south parallel but there are short term differences. These discrepancies are likely due to complex interactions between the southern and the northern hemispheres where, depending on the time of the year the Arctic Oscillation imposes change in the southern hemisphere or in the reverse, the Antarctic Oscillation imposes change on the northern hemisphere, tending to produce ‘mirror image’ results. Short term variations in these two data series  can be in opposite directions.

sst-indian

Figure 5

In figure 5 we compare the evolution of sea surface temperature in the Indian Ocean north of the equator  with that south of the equator.  The data is a twelve month moving average of monthly  means so as to remove the seasonal influence. It is plain that the more extreme variations occur north of the equator. Nevertheless the series are very similar in their evolution with generally coincident peaks.

sst-and-slp
Figure 6

In figure 6 we compare the evolution of sea level pressure in the Indian Ocean to the south of the equator with the evolution of sea surface temperature in the Indian Ocean north of the equator. Sea surface temperature tends to lag surface pressure by a few months. Plainly the Antarctic Oscillation affects sea surface temperature via coincident heating of the atmospheric column as reflected in increased geopotential height driving a reduction in cloud cover.

indian-ocean-sst-and-gph
Figure 7

Figure 7 looks at the relationship between geopotential height and sea surface temperature. Note that geopotential height is strongly related to sea surface temperature but the relationship is  not proportional. It is not the increase in sea surface temperature that drives the increase in geopotential height but warming of the air column due to the increase in the ozone content of the air within descending columns of air. These air columns reflect in their temperature the increased surface pressure, the increased warming at the surface and the increase in the ozone content of the descending air. At 200 hPa the air is warmer in winter than in summer due to enhanced ozone content in winter. The temperature of the air is independent of the temperature of the surface over which it lies.

slp-and-sst-monthly-indian
Figure 8 Sea level pressure in the Indian Ocean south of the equator compared to sea surface temperature north of the equator. Temperature lags pressure.by several months. There is pronounced warming in southern hemisphere winter months and occasional warming cycles in the summer months, notably in 2009-2010 and 2012- 2013. This warming is tied to the ozone content of the air in high latitudes.

In figure 8 we focus on monthly data.  Shown is the departure of a particular month’s data from the whole of period average for that month.

This graph reveals a climate system that is capable of swinging between a sea surface temperature anomaly of about -0.3°C and +1.2°C in an interval of between one and six years. The amplitude of this variation is almost double the increase in temperature that has occurred in the Indian Ocean over the last 68 years.  In this circumstance we should simply move on. There is nothing exceptional about this increase in temperature. There is no need to invoke new modes of causation to explain this phenomenon.

RECAP

Why has surface pressure and sea surface temperature in the Indian Ocean increased almost continuously since 2011? The answer lies in the forces that determine polar cyclone activity in the Antarctic circumpolar trough. Those circumstances relate to the  changing nature of the atmosphere in the area of overlap between the stratosphere and the troposphere in high southern latitudes.

As Gordon Dobson observed back in 1925, surface pressure is a by-product of total column ozone. Low pressure cells have more ozone aloft and exhibit a lower tropopause than high pressure cells.

Ultimately polar cyclone activity and surface temperature together with wind direction and intensity and the extent of mixing in the ocean  are a function of the ozone content of the air in high latitudes.