Reflection of sunlight from cloud at 5-8km in elevation (Cirrus).

https://earthobservatory.nasa.gov/IOTD/view.php?id=90269&src=eoa-iotd

Quote:

The EPIC data also helped confirm that the flashes are coming from a high altitude, not simply water on the ground. Two channels on the instrument are designed to measure the height of clouds. According to the observations, high cirrus clouds—5 to 8 kilometers (3 to 5 miles) up in the atmosphere—appeared wherever the glints were located.

“The source of the flashes is definitely not on the ground,” Marshak said. “It is definitely ice, and most likely solar reflection off of horizontally oriented particles.”

Marshak is now investigating how common these horizontal ice particles are, and whether they are common enough to have a measurable impact on how much sunlight passes through the atmosphere. If so, it is a feature that would need to be incorporated into computer models of how much heat is reaching and leaving Earth.

Perhaps we should admit that it will take time to get ‘the science’ properly settled.

There is a notion in IPCC  ‘climate science’ that high altitude cloud has a warming influence on the surface.    A manurial notion if ever there was one.

As to whether there will be ice cloud at elevation or not….then the ozone content of the air will be a factor of importance because ozone absorption of infrared from the Earth itself determines air temperature and therefore relative humidity and the degree and extent of precipitation.

Progress

If one appreciates the way in which the planet has warmed in some places and not in others, the way it warms in winter rather than in summer, the way it warms in fits and starts then, the thesis that the warming relates to the steadily increasing proportion of so called ‘greenhouse gases’ in the atmosphere must be seen to be implausible. If one appreciates that the high latitudes of the southern hemisphere are cooler today than seven decades ago, then it is obvious that there are more influential factors at work. If one appreciates that the entire southern hemisphere is no warmer today in the month of December than it was in the nineteen fifties then a sensible person would have to conclude that something other than the ‘enhanced greenhouse effect’ is at work. The  change in surface temperature is plainly not due to enhanced back radiation alone, if at all.

Indeed there are natural factors at work that have nothing to do with the activities of man. THE FUNDAMENTAL modes of natural climate change have been termed the Northern Annular Mode and the Southern Annular Mode. These modes involve shifts in atmospheric mass from high to mid and low latitudes and across the hemispheres accompanied by change in surface pressure, the winds and surface temperature.

Surface pressure simply reflects the total ozone content of the atmospheric column, an identity that was discovered more than 100 years ago. Ozone is material to the presence of what we call the stratosphere. It is change in the ozone content of the stratosphere that is responsible for change in surface pressure, surface winds, sea surface and air temperature.

I abandoned this blog for months while engaged in a project that demanded my full attention. During this period the election of Trump to the presidency of the USA and the appointment of men who understand that cheap and reliable energy is a requirement for economic growth and sustained living standards has led climate realists to think that the tide of manipulation designed to promote the idea of  ‘renewables’ will been turned back and we can at last relax.

The last few days have been spent on the flat of my back. With little else to do I went to Google to discover whether any progress has been made in explaining the role of the annular modes …and indeed there has, but in Beijing, not in Washington or Colorado.

I direct the reader to this page: http://ljp.gcess.cn/dct/page/65558

It is a treasure trove of useful observation and deduction.

A paper published in December 2016 is of the first importance

Xie, F., J. Li*, W. S. Tian, Q. Fu, F. F. Jin, Y. Y. Hu, J. K. Zhang, W. K. Wang, C. Sun, J. Feng, Y. Yang and R. Q. Ding, 2016:A connection from Arctic stratospheric ozone to El Niño-Southern oscillation. Environ. Res. Lett., 11, doi:10.1088/1748-9326/11/12/124026.

The paper can be accessed here: http://ljp.gcess.cn/thesis/files/Xie_2016_Environ._Res._Lett._11_124026.pdf

What is known as the El Nino Southern Oscillation represents the most spectacular manifestation of surface temperature change. This phenomenon has been described as an ‘oscillation’ that is said to be internal to the climate system. Not so. It has its origin in change in the stratosphere in high latitudes that is the subject of previous chapters in this blog. The most dramatic swings in the ozone content of the stratosphere occur in the northern hemisphere in winter.The poles are where climate change is initiated.

The authors conclude that: ‘understanding this kind of connection and potential feedback between the stratospheric tracer gases (such as ozone) and the climate system deserves more attention.’

I concur.

It’s one thing to identify the chain of causation and another to understand and explain the physical processes behind it. It’s yet another to explain how and why ozone varies in the polar stratosphere and to explain the drivers that operate in the upper atmosphere where the Earth system is a part of the interplanetary environment. This is the real frontier in climate science.

There is no great urgency to discover and describe the mechanisms involved, no pressing need for massive funding unless humanity is led astray by false prophets. We can expect that those who have a vested interest in continued funding of their ‘global warming’enterprise will put up vociferous arguments to try and justify their claims. End of the day, the voters decide how their taxes are spent and it appears that, when offered a clear alternative, voters can work out when they are being ‘had’ and adjust accordingly. It’s possible to fool some of the people some of the time but not all of the people all of the time.

Let’s hope the tide has turned.

Its a worry that ‘global warming’ hysteria got as far as it did and did as much damage as it did before people woke up to what has been happening.

42 THE WARMING OF THE INDIAN OCEAN. THE CANARY IN THE COAL MINE

CAUSE OF WARMING

In general the planet warms as surface pressure increases in low and mid latitudes.

The chain of causation runs like this: Increased surface pressure is associated with increased geopotential height, extra warmth in the atmospheric column and a consequent reduction in the quotient of moisture held in the very expansive ice crystal form. As cloud cover diminishes more solar radiation reaches the surface of the planet. When energy is absorbed by the ocean it is stored to depth and, by virtue of ocean currents, re-distributed, fortuitously warming those parts that receive little solar energy.

In contrast, when solar energy falls on land it is swiftly, in the main overnight, returned to the atmosphere. The warming of the atmosphere that is occasioned in northern summer, due to the extensive land masses of that hemisphere,  results in a global deficit of cloud cover in the middle of the year producing the annual maximum in planetary temperature when the Earth is furthest from the sun and solar irradiance 6% diminished by comparison with January.  It should be obvious (how did climate scientists miss this?) that the primary dynamic determining surface temperature is the temperature of the atmosphere in relation to the moisture that it contains.

REDISTRIBUTION

Please inspect the map below. The planetary winds drive ocean currents that mix cold waters from high latitudes and the ocean deep into the warm waters of the tropics. This is evident on the eastern margins of the oceans and particularly so in the southern hemisphere. The Indian Ocean is the odd man out with a weak cold current on its western margins and a warm, southward travelling, current on its eastern margin. The consequence is a relative backwater that is less  affected by the mixing of cold with warm water.

global-sst

It follows that the circulation of the oceans results in a very different thermal regime in each basin according to the  the ocean currents that are primarily driven by the winds. As the winds evolve, so do the currents.

The table below documents the extent of the temperature increase  over the last 68 years according to latitude and longitude in the three major ocean basins. For economy I focus on those latitudes that are warm enough to be relatively hospitable  to man.

sst-in-numbers

It is obvious that the bulk of the Pacific Ocean has not warmed to the same extent as the Indian and Atlantic Oceans. In terms of basin averages, in January the Indian Ocean has warmed by 0.87°C, The Pacific by 0.42°C and the Atlantic by 0.46°C. In July the Indian has warmed by 0.84°C the Pacific by 0.12°C and the Atlantic by 0.6°C. It is in July that the contrast between the oceans is strongest.It is the Indian Ocean that has warmed to the greatest extent.

THE SURFACE PRESSURE DYNAMIC

annual-slp

If we are to understand the differences in the rate of warming of the Ocean basins we need to comprehend to role of polar cyclones in high latitudes. Enhanced polar cyclone activity in the Antarctic circumpolar trough (red and orange in the map above) has, over the period of record, shifted atmospheric mass into low and mid latitudes from latitudes south of the 50° parallel. In consequence the high latitude west wind drift that is coextensive with the circumpolar trough, that drives cold water into the tropics, has accelerated. The flow is restricted at the Drake Passage between the Pacific and the Atlantic. Accordingly the Pacific Ocean cooled in parts and generally warmed at a much reduced rate when compared to the Indian and Atlantic Oceans.

drake-passage

The Indian Ocean is like the canary in the coalmine, a companion to the miner to warn him of a change in the quality of the air. The evolution of surface temperature in the Indian Ocean offers a glimpse of unfettered reality in terms of the march of surface temperature across the globe as it is forced by change in cloud cover associated with shifts in atmospheric mass and the change in the planetary winds.

The remainder of this chapter explores the shift in atmospheric mass from high southern latitudes and its relationship to surface pressure in the rest of the globe and the Indian Ocean in particular.

The discussion is is not based on the hypothetical constructs of a climate model or the abstruse mysteries of so called ‘planetary forcings’.  Rather it is grounded in observation and measurement based on data as  presented in the reanalysis work of Kalnay et al accessible here.

The graph below represents the evolution of surface pressure in the Indian Ocean south of the equator.We must to answer the question: Why is it so?

slp-indian-ocean-south-of-equator

WHY WORRY

The entire southern hemisphere has not warmed in the month of December in the last 68 years. If surface temperature were being forced by increased back radiation from the atmosphere the southern hemisphere should warm in all months.  There is no reason to expect the degree of warming due to a hypothetical increase in back radiation to be different in one month to another.  We therefore discard the hypothesis that temperature at the surface is driven by the carbon dioxide content of the atmosphere.  We look for other mechanisms to explain the flux in surface temperature. Radiation theory is all very well but in the real world, inoperable. The concept of anthropogenic warming is a distraction from fairyland. We can, to advantage, be more discriminating in what we choose to believe.

SURFACE PRESSURE DYNAMICS

sh-high-lat-surface-pressure
Figure 1 Sea level pressure in the region of the Antarctic circumpolar trough compared to sea level pressure in the entire region south of 50° south latitude.

Figure 1 compares the evolution of sea level atmospheric pressure in the Antarctic circumpolar trough to all latitudes south of 50° south. It is plain that the relatively short term fluctuations in surface pressure in the larger entity are greater than in the ‘trough’. In point of fact the trough expands and contracts across the parallels affecting surface pressure in adjacent latitudes and in particular across the Antarctic continent. The agent of change is polar cyclone activity that is energised by differences in atmospheric density between very different parcels of air that meet in the region of the trough in the very broad interface between the stratosphere and the troposphere between about 400 hPa and 50 hPa. It is in this region that the strongest winds are to be found. Polar cyclones are generated aloft. This is the nature of the ‘coupling of the troposphere with the stratosphere’, a concept that is a postulate of conventional climate science but remains a mystery so far as its modes of causation is concerned. If one is wedded to radiation theory it limits the mind.

slp-50-90-s-and-90n-to-50s
Figure 2 twelve month moving averages of sea level pressure either side of the 50° south latitude band encompassing the globe as a whole.

In figure 2 we compare the evolution of surface pressure south of the 50° south  parallel of latitude with surface pressure north of that same parallel. If the total mass of the atmosphere were to be invariable we would expect a strictly reciprocal relationship. As pressure falls on one side of the 50th parallel it should rise on the other. Plainly, the increase, decrease and subsequent increase in surface pressure in concert, between 1948 and 1964, is evidence of a planetary evolution in the quantum of atmospheric mass perhaps associated with enhanced loss in very active solar cycles and incremental gain in quiet cycles. That is a subject for another day.

Plainly, since 1964 it is the reciprocal transfer relationship that dominates. When atmospheric mass is lost south of the 50th parallel it moves north the 50th parallel and vice versa.This process of exchange is referred to as the Antarctic Oscillation.

slp-indian-versus-90n-50s
Figure 3

In figure 3 we compare the evolution of surface pressure in the Indian Ocean south of the equator through to 30°of latitude with that north of the 50th parallel.

indian-versus-90n-70-50s-two-axis
Figure 4

Figure 4 presents the same information as in figure 3 but on two axes with independent scales. It’s plain that broadly speaking the Indian Ocean south of the equator gains and loses atmospheric mass in parallel with all points north of the 50th south parallel but there are short term differences. These discrepancies are likely due to complex interactions between the southern and the northern hemispheres where, depending on the time of the year the Arctic Oscillation imposes change in the southern hemisphere or in the reverse, the Antarctic Oscillation imposes change on the northern hemisphere, tending to produce ‘mirror image’ results. Short term variations in these two data series  can be in opposite directions.

sst-indian

Figure 5

In figure 5 we compare the evolution of sea surface temperature in the Indian Ocean north of the equator  with that south of the equator.  The data is a twelve month moving average of monthly  means so as to remove the seasonal influence. It is plain that the more extreme variations occur north of the equator. Nevertheless the series are very similar in their evolution with generally coincident peaks.

sst-and-slp
Figure 6

In figure 6 we compare the evolution of sea level pressure in the Indian Ocean to the south of the equator with the evolution of sea surface temperature in the Indian Ocean north of the equator. Sea surface temperature tends to lag surface pressure by a few months. Plainly the Antarctic Oscillation affects sea surface temperature via coincident heating of the atmospheric column as reflected in increased geopotential height driving a reduction in cloud cover.

indian-ocean-sst-and-gph
Figure 7

Figure 7 looks at the relationship between geopotential height and sea surface temperature. Note that geopotential height is strongly related to sea surface temperature but the relationship is  not proportional. It is not the increase in sea surface temperature that drives the increase in geopotential height but warming of the air column due to the increase in the ozone content of the air within descending columns of air. These air columns reflect in their temperature the increased surface pressure, the increased warming at the surface and the increase in the ozone content of the descending air. At 200 hPa the air is warmer in winter than in summer due to enhanced ozone content in winter. The temperature of the air is independent of the temperature of the surface over which it lies.

slp-and-sst-monthly-indian
Figure 8 Sea level pressure in the Indian Ocean south of the equator compared to sea surface temperature north of the equator. Temperature lags pressure.by several months. There is pronounced warming in southern hemisphere winter months and occasional warming cycles in the summer months, notably in 2009-2010 and 2012- 2013. This warming is tied to the ozone content of the air in high latitudes.

In figure 8 we focus on monthly data.  Shown is the departure of a particular month’s data from the whole of period average for that month.

This graph reveals a climate system that is capable of swinging between a sea surface temperature anomaly of about -0.3°C and +1.2°C in an interval of between one and six years. The amplitude of this variation is almost double the increase in temperature that has occurred in the Indian Ocean over the last 68 years.  In this circumstance we should simply move on. There is nothing exceptional about this increase in temperature. There is no need to invoke new modes of causation to explain this phenomenon.

RECAP

Why has surface pressure and sea surface temperature in the Indian Ocean increased almost continuously since 2011? The answer lies in the forces that determine polar cyclone activity in the Antarctic circumpolar trough. Those circumstances relate to the  changing nature of the atmosphere in the area of overlap between the stratosphere and the troposphere in high southern latitudes.

As Gordon Dobson observed back in 1925, surface pressure is a by-product of total column ozone. Low pressure cells have more ozone aloft and exhibit a lower tropopause than high pressure cells.

Ultimately polar cyclone activity and surface temperature together with wind direction and intensity and the extent of mixing in the ocean  are a function of the ozone content of the air in high latitudes.

41 WIND AND WATER

This post addresses questions of interest namely:

  1. To what extent is the temperature of the surface of the sea simply a reflection of a variable rate of mixing of the volumes of cold water from high latitudes and the deep ocean into the warmer waters of low and mid latitudes?
  2. To what extent is the variation in surface temperature due to a change in cloud cover?
  3. To what extent is the variation in surface temperature due to a ‘greenhouse effect’ as the carbon dioxide content of the atmosphere increases?

At the outset we can dismiss the notion that a greenhouse effect drives surface temperature.  The Southern Hemisphere has not warmed in December for seven decades.  In logic (science) one instance of failure is  sufficient to reject a hypothesis. If one persists with a failed hypothesis one is engaged in a religious observance rather than science.

Figures 1 a,b,c and d are tendered in support of this observation

1000-hpa-t

Hemisphere surface temp

SH SST

sst-jan-and-june

Figure 1 a, b, c and d. data source Kalnay et al reanalysis here. The arrow in 1d is horizontal.

It is plain from the data in figure 1 c that temperature evolves differently according to the month of the year, that it increases and decreases and the rate of change is highly variable.

If we are to understand climate change, it is the highly variable evolution of surface temperature from month to month that we need to explain.

EVOLUTION OF TEMPERATURE ACCORDING TO LOCATION AND TIME

To investigate the mixing of cold with warm water and temperature change due to cloud effects, it is useful to look at raw data that describes the surface temperature of the ocean at a moment in time.

The Earth can be divided into discrete zones according to latitude and longitude. Figure 2 represents one of these zones at 30-40° north latitude. Plainly, there are zones in the North Pacific Ocean where temperature has declined over the last seventy years.

30-40-north-pacific-ocean
Figure 2

For this analysis the globe can be divided into twelve zones according to longitude in each of four latitude bands namely 30-40° south, 0-30° south, 0-30° north and 30-40° north. In zones dominated by land data is not reported. The upshot is that there are twenty nine zones with large bodies of water to consider.

Figure 3 shows sea surface temperature on the 17th of September 2016.  Superimposed are numbers indicating whole of period change for both January and July, the two months that are known to exhibit the greatest variability. Note that it is the change in the Excel calculated trend line that is reported here rather than simply the difference in the temperature between the first and last month.

sst-increase
Figure 3

For clarity the data is presented again in table 1.

sst-in-numbers

Table 1

If we consider increases of 0.9° C and more as notably extreme, it is in the southern hemisphere in the 0-30° latitude band and the 30-40° south latitude bands that  extreme warming  is observed. Look for the numbers in white on the map and the cells in yellow  in in table 1..  Change smaller than 0.2°C is marked in green and enclosed with a border.

Generalising we can say that temperature advance is more a southern than a northern hemisphere phenomenon. Between the equator and 30° south the increase in January is notable. At 30-40° south the increase in June is notable. The Pacific is both peaceful and more stable in its temperature than the Indian and Atlantic Oceans. Some areas of the Pacific are cooler today than they were seventy years ago.

Why does temperature change exhibit such diversity?

WIND AS DRIVER

The lowest surface atmospheric pressure  occurs in the Antarctic circumpolar trough that is located over the Southern Ocean on the margins of the Antarctic continent. There is no counterpart to this extreme trough in surface pressure in the northern hemisphere where moderately low surface pressure is found over the continents in summer and the sea in winter. Accordingly, across the entire globe, including the tropics, air moves towards the south east, spiralling towards the Antarctic circumpolar trough. Locally, counter currents exist with the movement of the air in other directions but this north- west to south- east flow is the dominant pattern. Part of the counter flow is moist air that moves from the equator into mid and high latitudes, especially in the northern hemisphere, bringing moisture and warmth to cold locations far from the equator. This is a counter flow to the trade winds and without this flow high latitudes would be both colder and drier. Counter flows are in part monsoonal in nature but they also derive from the fact that on a local scale, air circulates about cells of low and high surface pressure.

The strongest winds on the planet are the westerlies of the southern hemisphere. These are also the most variable winds due to the ever changing relationship between surface atmospheric pressure in the mid latitudes and the Antarctic circumpolar trough. This westerly flow has become progressively more extreme over the last seventy years. Oscillations in the flow are consistent with change in the ‘Antarctic Oscillation index’. This change, that is globally influential, is driven by the changing intensity of cyclonic activity in the Antarctic circumpolar trough.

With the notable exception of the Indian Ocean, currents circulate in a clockwise direction in the Northern Hemisphere and anticlockwise in the Southern Hemisphere. Currents are forced by the planetary winds. Since the strongest of these winds are the westerlies of the Southern Ocean, this is where the movement of the ocean is most vigorous. The West Wind Drift of the southern ocean is interrupted by the near conjunction of the South American land mass and the Antarctic Peninsula. A certain amount of up-welling occurs in coastal waters promoting strong fisheries on the Eastern margins of the Oceans, particularly off the coast of Chile. A failure in this up-welling involves a collapse in the fishery. The intensity of up-welling changes the pattern of surface temperature and as we see in table 1 the effect is very much greater in the Pacific.

Notable is the northward extension of warm waters to provide a more equable climate to the western margins of the ocean basins in the northern hemisphere. Because these flows  are anomalously warm as they reach the eastern margins of the ocean basins, so the western margins of both North America and Europe are warmer than they would be in the absence of these warm waters. The Gulf Stream is an instance but the Eastern Pacific is equally an example. There is no comparable situation in the southern hemisphere because the northward flow of cold Antarctic waters on the western margins of the southern continents is deterministic.

Limiting this tendency to equable temperatures on the eastern margins of the major oceans, cold water from high latitudes is driven towards the tropics. This is particularly the case in the Pacific (the largest basin) and more particularly in the southern hemisphere. Anomalously cold water is therefore found in the region of the Galapagos Islands and also from Cape Town to Sierra Leonie. Cold water coursing along the coast towards the equator tends to promote precipitation over the ocean rather than the land,and the desertification of adjacent land.

In complete contrast, the Western coast of Western Australia is warmed by a southerly flowing current.  The Indian Ocean is atypical in that it circulates weakly in an anticlockwise direction with anomalously cool water moving northwards along the East coast of Africa penetrating to the Persian Gulf and the coast of India. Perhaps it is the strength of the monsoonal influence in this part of the world that dictates this contrary circulation.  Accordingly the relative backwater that is the Indian Ocean has produced the steepest increase in sea surface temperature over the last seven decades. There is an increase of 1.3°C between Africa and Australia in the 0-30° latitude band in the month of January.  The Atlantic south of the equator, also exhibits a temperature increase of about 1°C with an increase of 1.3°C on the west coast of the African continent, again in the southern hemisphere.

The pattern of warming and cooling is of interest because it comes about via the joint influence of the change in cloud cover, change in the rate of admixing of cold waters from high latitudes and the up-welling of cold water from the ocean deep. Plainly the rate of temperature increase in the Pacific has been  moderated and even reversed by comparison with the Indian and Atlantic Oceans.

As already noted, the increase in the temperature of waters south of the equator is greater than the increase in the temperature of the waters of the northern hemisphere in comparable latitudes. This increase has occurred despite the obvious cooling influence due to the West Wind Drift that is so apparent in the Pacific. This exaggerated surface temperature increase is consistent with the marked increase in surface pressure, geopotential height and upper air temperature in the low and mid latitudes of the southern hemisphere. A southward expansion of the zone of high surface pressure in the mid latitudes of the southern hemisphere can be described as an expansion of the Hadley Cell. So the heavy temperature increase in these latitudes is unequivocally due to a decline in cloud cover.

But there are large areas across the Pacific and Atlantic Oceans that have experienced smaller increases in temperature and others zones where a decline in temperature has occurred due to the admixture of cold water with the intensification of the planetary winds that has occurred over time. In June there is significant cooling at 30-40° north probably due to enhanced interaction with the Arctic Ocean. The corollary is a decline in ice coverage in the Arctic. This cooling follows from the acceleration of the westerly winds in high latitudes, and especially so in the southern hemisphere.

SEA SURFACE TEMPERATURE, ATMOSPHERIC PRESSURE AND CLOUD

The relationship between surface pressure and sea surface temperature is documented in figure 4.

SST and Surface pressure 1
Figure 4

The root cause of the increase in surface pressure in the low and mid latitudes of the southern hemisphere is the decline in surface pressure in the region of the circumpolar trough that surrounds Antarctica. This is in turn related to the increase in the ozone content and the temperature of the stratosphere. As Gordon Dobson observed in the 1920s, following on from the work of  the pioneering French meteorologist deBort in the last decade of the 19th century, surface pressure is a reflection of the ozone content of the upper portion of the atmospheric column. As surface pressure falls away the tropopause is found at ever lower elevations. Differences in air density between air masses rich and poor in their ozone content gives rise to jet streams that manifest as polar cyclones at the surface.  As the vorticity of polar cyclones within the Antarctic circumpolar trough varies, so surface pressure changes across the rest of the globe via mass exchange. A fall in pressure in the Antarctic trough signals a shift in atmospheric mass to latitudes north of about 50° south. It is this shift in mass that is associated with the rising air temperature and diminishing cloud cover in the low and mid latitudes of both hemispheres.  Declining cloud cover is associated with rising air temperatures in the cloud zone reflected in increasing geopotential height at 500 hPa. This particular association is frequently the subject of comment in meteorological circles. Ozone is ubiquitous; ozone gathers infrared energy from the Earth itself and heats the air, its efficiency in this respect increasing with surface pressure. It provides more energy to the troposphere than it does to the stratosphere. In this way the extent of cloud cover depends upon the changing flux of ozone in the air.

To understand the evolution of climate we must discard propositions that are devoid of value and re-learn that which was pioneered more than a century ago.

CONCLUSION

Of major importance to the evolution of surface temperature are ocean currents that depend upon the planetary winds for their motion.

The origin, temperature and humidity of moving air changes according to the flux in the ozone content of the air in centres of low surface pressure. Change is initiated in the stratosphere in high latitudes chiefly in winter. This is ultimately what drives climate change at the surface with a very different pattern of temperature change according to the month of the year. Man is a minnow of little consequence in the grand scheme of things.

In general the pattern of evolution in surface temperature in the near coastal areas of those parts of the Earth favourable to human settlement is dictated by the interception and storage of solar energy by the oceans as mediated by cloud cover.  Temperature change at particular locations is mediated by the movement in the waters of the oceans that represent most of the surface of the planet. The oceans are the chief organ for energy storage by virtue of transparency to solar radiation.  Energy storage occurs below the surface. Our ability to monitor the temperature of the ocean below the surface is limited. Until we can assess temperatures below the surface there is no valid way to monitor the energy relationships that determine the evolution of temperature above the surface. One should not put too much reliance on surface temperature as an indication of the state of the system over intervals shorter than a decade.

The anthropogenic argument is not a product of observation or deduction but a form of hysteria. Its origin is in the dis-tempered gut of modern man, reeling from the pace of change and the pressures of urban living. Perhaps it is due to a feeling of helplessness in a world in which there is more regulation, more complexity, greater inter-dependence and perhaps a feeling of chronic uncertainty due to the fact that ever increasing numbers enjoy less of the fruits of their toil, governments are piling up debt and seem to be out of touch with the needs of the common man.

In a planet that is too cool for both comfort and productivity man should not worry when the surface warms slightly, a frequent and highly beneficial circumstance in the evolution of the Earth. When we start shedding clothes in winter because we need to cool down, that will be the time to worry.

Worry induces a search for remedies and mankind becomes susceptible to the wiles of multitudes of carpetbagging rent seekers, keen to exploit the situation. That, unfortunately is the situation.  Too many carpetbaggers have staked a claim on the general revenue. Central banks fund ever increasing deficits creating spending power where none is earned. This is irresponsibility on a grand scale. The economic system appears to be lurching towards a catastrophic collapse.

 

 

 

40 A WIND FROM THE SOUTH AND A WIND FROM THE NORTH

Ecclesiastes 1:6
The wind goeth toward the south, and turneth about unto the north; it whirleth about continually, and the wind returneth again according to his circuits.

This post revises key concepts that relate to the evolution of climate. Good teaching is about saying it again in slightly different ways until it sinks in. This caters for the students who can’t tune in at a particular time and many others whose perceptual frameworks are sort of ‘frozen’. Its also possible that the message can be delivered without the  necessary flair.

Knock-knock.  New idea. Fundamental to the nature of Earth is the difference between  the warmth of low latitudes and the cold of high latitudes.  Without the redistribution of energy by wind and water the extent of the habitable latitudes would be tiny. In the tropics there is little variation in the nature of the air from day to day. But in the mid and high latitudes change is the rule.  When the wind changes in a systematic fashion  to establish new states, we have climate change. The further we depart from the equator, the greater is the change that is experienced.

The air moves from zones of high to zones of low surface pressure. Pre-eminent in terms of low surface pressure is the Antarctic Circumpolar Trough. It is the zone coloured orange in figure 1.

Annual SLP
Figure 1

Kalnay et al’s reanalysis of 1996 to be found here. shows the evolution of surface pressure by latitude over time and is presented in a graphical format in figures 2 and 3.

July pressure
Figure 2.
January pressure
Figure 3

Plainly, the work that is done in redistributing energy across the latitudes is dependent on the evolution of surface pressure in the Antarctic Circumpolar trough and to a lesser extent the latitudes north of 50-60° north.

 

40-60-n-and-s-t-air
Figure 4

Figure 4 plots the temperature of the air as it evolved in the year 2015 at  500 hPa at 40-60° of latitude in the northern hemisphere at left and the southern at right. Plainly there is a north-west to south-east orientation in the movement of the air masses as  the atmosphere super-rotates about the Earth in the same direction that the Earth rotates, but faster. The speed of rotation increases in the southern hemisphere where the angle of attack is more aligned with the parallels of latitude. The air spirals from north to south at all latitudes.Warmer parcels will have an ascending  tendency while colder parcels will be descending.

THE IMPORTANCE OF POLAR CYCLONES

New Concept: It is polar cyclones that are responsible for the intensity and evolution of the circumpolar trough.

A core theme of this work is that Polar Cyclones are energised by warm, low density cores in that space where the troposphere overlaps with the stratosphere. Differences in the ozone content of the air gives rise to differences in air density. A chain of cyclones on the margins of Antarctica   give rise to a rapidly circulating polar vortex in the stratosphere. There are no limits to convection in the stratosphere.

In summer the air rises to the limits of the atmosphere directly over the continent of Antarctica but in winter there is descent. A rising cone of air surrounds the zone of descent. This cone is sometimes described as a polar vortex. The cone begins at 300 hPa over the circumpolar trough and widens to take in the mid latitudes at the highest levels.

The upper troposphere/Lower stratosphere in the region of the circumpolar trough is characterised by intense mixing of air from diverse origins, the troposphere, the stratosphere and the mesosphere.

Between October and March the cone of ascending air below 50 hPa tightens like a hangman’s noose bringing air from the troposphere to the pole, creating an ozone hole, the falling away of surface pressure at this time of the year associated with generalised ascent over the Antarctic continent and so excluding the flow of air from the mesosphere that descends throughout winter.

That the circumpolar trough is due to differences in the ozone content of the upper air should be non-controversial.

THE DENSITY OPACITY OF THE GREEN BLOB

The circumpolar trough is an unremarkable aspect of the atmosphere in the view of UNIPCC. The significance of its presence is  unappreciated. This is not an unusual state of affairs in the annals of humanity. In fact,  ‘Climate Science’ has not leaned a lot about atmospheric dynamics since the time of the pioneer Bjerknes who published a work on the near surface characteristics of polar cyclones in 1922.

Bjerknes

It is realised, at least in meteorological circles, that a trigger is required for the formation of low pressure cells of rotating air  in the region of the circumpolar trough. That trigger  is an upper level trough, a mass of warmer, low density ozone rich air.

In  1922 it was not apparent that the most vigorous winds are located in the overlap between the stratosphere and the troposphere. Neither was it apparent that cold ozone deficient air  from both the mesosphere and the tropical troposphere are drawn towards the circumpolar front in the space shared by the upper troposphere and the lower stratosphere.

In fact the concept of a ‘stratosphere’ was pretty new in 1922. In many respects we have not moved on from that position despite the passage of 100 years. Indeed much that was known prior to the 1970’s has since been forgotten in parallel with the increasing concern that man and the environment in which he lives are  incompatible entities. Educators went off in socially responsible directions. A fabulous gravy train  was created for scientists and space agencies and all those who aspire to gain their daily bread by looking after the environment, painstakingly monitoring the activities of a an every increasing panoply  of despoilers, at one end mighty global corporations and at the other the humble cow that provides the milk for your morning cereal irresponsibly farting in  its field of green. Such is the work of the modern missionary.

The intensification of polar cyclones in winter, and the consequent lower surface pressure at that time of the year is due to the proliferation of ozone. Gordon Dobson observed in the 1920’s that, in high and mid latitudes low surface pressure identifies areas with high total column ozone. Dobson measured wind velocity and discovered that the strongest winds were not at the surface but in the region of the tropopause. The tropopause is kilometres lower when surface pressure is low than when surface pressure is high. This circumstance may be described as an upper level ‘trough’, a zone of  reduced air density that shows up in elevated geopotential height contours. Had Bjerknes apprehended the structure of the upper air we would not now be worrying about carbon dioxide in the atmosphere. We would be aware that the source of long term climate change, the source of decadal variations, the source of inter-annual variations and indeed our daily weather lies in variations in the ozone content of the stratosphere. We would  be at peace with the notion that our ‘rather too cool for comfort’ planet gains and loses energy according to change in the extent of its cloud cover.

There is so much to learn.

 

39 INFLUENCE OF COSMIC RAYS ON THE GLOBAL CIRCULATION OF THE ATMOSPHERE AND SURFACE TEMPERATURE

The notion that the climate of the Earth is independent of external influences is a basic tenet of ‘climate science’ as promulgated by the UNIPCC. It is maintained that the only way in which the sun could influence surface temperature is via a variation in TSI  (total solar irradiance). Since TSI is invariable it is held that the sun can not be responsible for any variation in surface temperature. In consequence it is maintained that the flux in surface temperature is internally generated and  that surface temperature will increase  as a function of back radiation from so called ‘greenhouse gases’, the chief of which is carbon dioxide.

But the assumption that change is internally generated is unwarranted. The most cursory examination  of the climate record reveals that the Earth has natural modes of climate variation capable of increasing and decreasing surface temperature and to do so at different rates at different latitudes and also between the hemispheres.  In this post I will demonstrate that the Earth’s climate system is an open system, that responds to external influences so as to increase and decrease surface temperature. Furthermore, I will demonstrate that this is the only mode of climate variation that is in operation.

The Annular mode concept is described here.

The UNIPCC has a discussion of the Northern and Southern Annular modes here. Climate models are incapable of simulating these natural modes of change. Nor will models be able to simulate the change until the underlying mechanics are understood. Currently, the discussion is about ‘troposphere-stratosphere coupling processes’ jargon for the manner in which  change that originates in the stratosphere ‘propagates to the troposphere’. The argument as to whether change begins in the troposphere or the stratosphere is ongoing.

If we investigate the, by now  very well documented, ‘Northern and Southern Annular Modes’ of natural climate change we observe:

  1. At all points on the Earths surface temperature is most variable in winter being driven by Arctic processes that are most influential in January and February and Antarctic processes that are most influential in June and July.
  2. An interchange of atmospheric mass occurs in winter between high latitudes and the rest of the globe. This changes the balance in the pressure relationships that determine the strength and direction of the planetary winds. In consequence there is change in the equator to pole temperature gradient. In general, because surface pressure is lowest in the region of the circumpolar trough that surrounds the Antarctic continent air flows from the northern hemisphere to the southern hemisphere and from equatorial regions towards  Antarctica producing warmer or cooler temperatures at each point along the route according to the origin and strength of the flow of air that emanates from warm or cold places.The natural state of the climate system involves a transition between these warm and cold regimes.
  3. As atmospheric mass shifts from high to mid and low latitudes surface pressure increases in the latter and it is observed that surface temperature increases in proportion to  surface pressure, geopotential height at 500 hPa and the temperature of the air above 500 hPa. Plainly, the surface temperature response is due to change in cloud cover. However, this point is not be made in the literature due to ideological fixation on the notion that surface temperature must be a product of downward radiation from radiating gases. So, the relationship between geopotential height and surface temperature may be acknowledged  but is never explained.
  4. The agent of shifts in atmospheric mass is the relative intensity of polar cyclones that collectively constitute the Antarctic Circumpolar Trough. The vorticity of these cyclones is driven by contrast in air density between 300 hPa and 50 hPa where the stratosphere overlaps with the troposphere and marked conjunctional disparities in tropopause height can be observed. This is where warm ozone rich air from the mid latitudes meets cold, ozone deficient air that occupies the the polar cap in winter. Here, the ozone content of the air is a strong driver of air density. It is observed that air masses characterised by low surface pressure are rich in ozone aloft while air masses that exhibit high surface pressure are relatively deficient in ozone aloft emanating from either the tropics or the Antarctic continent. All air streams meet at the Antarctic circumpolar trough and the contrast in the nature of these air streams is greatest in winter.
  5. It is observed that the ozone content of the air in high latitudes increases strongly in winter, providing the energy, via the absorption of long wave radiation from the Earth itself to drive convectional uplift to the limits of the atmosphere where ozone accumulates in localised ‘hot spots’ like the north Pacific or the western Pacific in the region of New Zealand.
  6. The exchange of atmospheric mass that occurs between the high altitudes of the southern hemisphere and the rest of the globe has a fulcrum approximately  at 45° -50° south latitude. That fulcrum moves marginally towards the equator when polar surface pressure is reduced and pole-wards when polar surface pressure increases.
recent-sho
Figure 1 Anomalies in surface atmospheric pressure with respect to the whole of period average. Reanalysis data Kalnay et al sourced here

Figure 1 documents the reciprocal relationship in atmospheric surface pressure either side of the 50° south parallel.   Enhanced  polar cyclone activity  lowers surface pressure south of 50° of latitude  and antithetically, relaxation of polar cyclone activity allows atmospheric mass to return to high southern latitudes.

The ozone content of mid to high latitude air is enhanced in winter. Logically the enhancement is not a product of reduced ionisation pressure due to low sun angle because enhancement is uneven and episodic in nature. The early months of the year when atmospheric mass tends to be drawn to the Arctic, depleting Antarctic surface pressure, is a period when the ozone content of the air on the equatorial side of the Antarctic circumpolar trough is seasonally low. On the other hand, the mid winter months are periods where surface pressure in the high latitudes of the southern hemisphere is high. It is in these mid and late winter months, when polar surface pressure is enhanced, that the ozone content of the air varies most dramatically, and with it polar cyclone activity. It is in these months, where the norm is high surface pressure, that the opportunity for  wholesale shifts in atmospheric mass is at its greatest.

It is uncontroversial that the ozone content of the stratosphere depends upon the the ionisation of the oxygen molecule by short wave radiation from the sun. Where this actually occurs and how the ozone content of the air gets to be most elevated at the time and in the locations where short wave radiation is seasonably unavailable should be a matter of  great scientific interest. It will no doubt become so when those who study climate open their minds to the possibility to external regulation of the climate system….an open rather than a closed system. Would it not be astoundingly remarkable if the  earth system were to be entirely free and independent of external influences? All our experience on Earth is that interdependence and adaptation are pervasive features of natural systems. Why should the Earth be free of influences emanating from its inter-terrestrial environment?

In high latitudes, cosmic rays, emanating not from the sun but from intergalactic space ionise the atmosphere. The neutron monitor that measures the incidence of these rays at the south Poles is pictured below.

sp-neutron-monitor

"Neutron monitors of the Bartol Research Institute are supported by the National 
		Science Foundation."

Neutron data from the Bartol Research institute can be accessed here

The daily Antarctic Oscillation Index (AAO) can be accessed here

neutrons-and-aao
Figure 2

To interpret figure 2 one  mus be cognisant of the fact that the AAO index  can be taken to represent the reciprocal of high latitude surface pressure. When the AAO index rises it indicates a decline in surface pressure south of the 50° parallel of latitude.

Figure 2 indicates that as the neutron count increases surface pressure falls away in high southern latitudes. The surface pressure response appears to lag the neutron count by about a week. It is inferred that ionisation by cosmic rays enables the production of ozone  that in turn absorbs long wave radiation from the Earth, enhancing differences in the density of the air and driving polar cyclone activity that is responsible for shifts in atmospheric mass.

It is thought that the intensity of cosmic rays outside the Earth environment is relatively invariable. Within the environment of the Earth and its atmosphere the neutron count, a product of cosmic ray activity, is a function of solar activity. In this reversed out fashion the sun indirectly regulates the ozone content of the atmosphere in high latitudes, the distribution  of atmospheric mass and surface temperature. This is, in all likelihood, just one of a many ways that the sun influences the atmosphere of the Earth and surface temperature. The gravitational effect of the moon is a prime candidate so far as the modulation in the flux of atmospheric mass is concerned. The ionising effect of short wave radiation inflates the atmosphere and will condition its response to electromagnetic influences. It should be born in mind that the atmosphere super-rotates with respect to the rotation of the Earth itself and its rate of rotation very likely responds to the electromagnetic environment that is more powerful with elevation, and more so over the poles than at the equator.

sunspots-and-neutrons
Fig 3 Source here

Figure 3 indicates that 2015  represents a recent low point in the incidence of cosmic rays as sunspot activity peaks in solar cycle 24. Neutron counts have increased strongly at Thule during 2016.  Southern winter has seen a further steep fall in surface pressure in high southern latitudes as documented in figure 4.

slp-50-90s-and-40-50s
Figure 4. Anomalies in sea level pressure with respect to the whole of period average since 1948 according to the Kalnay et al reanalysis. . Data source here.

Figure 4 indicates that in general sea level pressure varies in a reciprocal fashion either side of the 50° latitude band in the southern hemisphere while surface pressure at 40-50° south is relatively constant.

CONCLUSION

Surface temperature on Earth is a product of the planets dependence on the intergalactic environment in which it exists. Important aspects of that environment include emanations from the sun and also from beyond the solar system.

There is good reason to believe that the modes of natural climate change described here can account for the entire spectrum of climate change since 1848. Witness the fact that there has been no increase in surface temperature in the month of December since  1948-56 as documented in figure 5 below. If surface temperature were responding to the increased presence of CO2 one would expect to see a background level of warming in every month. Plainly this is not the case. Plainly, warming and cooling is regulated according to change that originates in high southern latitudes in winter.

SH SST
Figure 5. Anomalies in sea surface temperature in the southern hemisphere from decade to decade. The anomaly is with respect to the divergence from the whole of period average  between 1948 and 2016. Data from Kalnay’s reanalysis here

 

 

 

 

 

 

38 UNCOMMON SENSE

Hemisphere surface temp
Fig. 1 Evolution of temperature at 1000 hPa in the Northern and Southern hemispheres of the Earth. DATA SOURCE:

According to Mark Twain, when it comes to numbers there are Lies, Damned Lies and Statistics.

Any form of manipulation to achieve simplification involves suppression of information.If one is to draw intelligent conclusions it is better to have all the original data. The less averaging the better.

Even the act of aggregating for a whole hemisphere, as is done in figure 1, is questionable. A sphere exhibits very different characteristics across its surface and so does  a half sphere. But, looked at in this way, its better to look at the two hemispheres seperately rather than together. The act of dividing the globe in half at the equator is a reasonable thing to do because the two are very different and we can learn in the process.

In figure 1  we have monthly data.  The peak in the cycle is the warmest month and the trough is the coolest month.Between the two are all the other months.

The two hemispheres are about as different as two planets. Temperature in the southern hemisphere (red line) exhibits a smaller annual range. Winter is marginally warmer than in the northern hemisphere. Summer is a lot cooler. In the Southern Hemisphere temperature is moderated by the extensive oceans.

In the Northern Hemisphere temperature is driven up due to the extensive areas of land. This  affects high more than low latitudes. The warming of the mid and high latitudes of the northern hemisphere in summer is due to atmospheric heating and loss of cloud cover. More solar radiation gets through the clouds to warm the surface. Paradoxically the Earth is furthest from the sun in July and accordingly solar radiation is 6% weaker by comparison with January. Straight away we see that atmospheric heating and cloud cover is the dominant influence on surface temperature while the degree of variation in surface very much depends on the ratio of sea to land. Who would have thought that? We have been told that it is the ‘greenhouse effect’ that makes surface temperatures what they are. In fact surface temperature depends on whether the Earths natural sunshade is in place or not and just how far a location is from the moderating influence of the sea. There is always less cloud over land than over the sea and particularly in those places where little rain falls.

In fact the ratio of land to water determines the extent of atmospheric warming and cloud cover on all time scales from daily through to annual. This is the strongest influence on surface temperature. Its due to the fact that the temperature of the air changes quickly and to a much greater extent than the amount of water vapour in the air that is required to form cloud. Water vapour content tends to be reduced by cold overnight temperatures giving us dew and cloud in the mornings and relatively clear sky at midday. The closer to the surface of the Earth, the more moisture can enter the atmosphere via evaporation from open water and plant transpiration. The more elevated the location, the colder is the air and , the lower is its moisture content. The higher the elevation, the less  the air is affected by warming and cooling at the surface. The higher the elevation the more the temperature of the air is determined by its ozone content.

When the ozone content of air increases and it warms via the interception of long wave radiation from the Earth, the response is measured as increased geopotential height. Surface temperature rises in proportion to geopotential height. That is due to the cloud cover response. Surface pressure, geopotential height and surface temperature all rise and fall together.This is the natural climate change dynamic driven by change in cloud cover.

Enough of these ramblings. Back to figure 1. The dotted lines in figure 1 are strictly horizontal. They have no slope. These lines assist the eye to  detect variations. There is a relatively small variability in temperature in the southern hemisphere in summer (upper limit of red series) over the last 69 years and no obvious trend. On this basis one can rule out carbon dioxide as a driver of surface temperature because the gas is well mixed. If there is a back radiation effect it needs to show its face here. Palpably it doesn’t. If the back radiation effect depends at all on enhancement by humid air and the presence of cloud we should see a continuous increase in the temperature of the air in the southern hemisphere from November through to March because this is the time of the year when cloud cover peaks. But, we see that there is no change in surface temperature in the warmest month of the year. However, we do see a gradual increase in coolest month temperature in the southern hemisphere from about 1970. This is the warming that needs to be explained.

Now, lets look at the northern hemisphere. Coolest month temperatures rise and fall over quite short time intervals. The 1970’s are the coolest decade in the northern hemisphere in terms of both the warmest summer month and the coolest winter month.   Northern Hemisphere temperature increased after 1998 in both coolest and warmest month and this too needs to be explained.

A QUESTION OF TIMING

The raw data doesn’t inform us as to whether the climate cooled or warmed in spring or autumn. Does that matter?  Come to think of it, if the global average rises due to an increase in temperature in the winter months is that really a problem. Would we not actually prefer warmer winters? Can we make rational decisions on the basis of a global average? Not really! Under a regime of dramatically increased summer temperatures with thousands dying of heat stroke and and dramatically reduced winter temperatures with thousands freezing to death, the average may be unchanged. We may think the planet is warming if we see a rising global average. But that could simply represent some warming in the coldest, abominably cold month so that month is slightly less abominably cold. Quoting the global average is the sort of thing that Mark Twain was complaining about.

Having dispensed with the CO2 furphy and the global average furphy we can now concentrate our on why the temperature changes as it does!

WHY HAS SURFACE TEMPERATURE CHANGED AS IT HAS

What stands out most in figure 1 is the warming that occurs in the southern hemisphere in winter (red line) starting in the 197o’s.

Given that the temperature of the air is a chilly 11°C in mid winter, this warming, and even more so, the warming of the northern hemisphere in winter, is unequivocally beneficial. This is a matter for congratulation rather than concern. We live in fortunate times. But it would be nice to know why this is happening because winter warming inflates the average for the globe as the whole and gives rise to a lot of hysterical  nonsense that is swallowed by an uncritical media that take the point of view that the science of climate is a matter for ‘scientists’ and the average global temperature  is Gods Word. These people have no idea what Mark Twain was talking about.

Politicians don’t read science. They read the daily papers. We get the blind leading the blind and a cabal of irresponsible scare mongers beating the drum and clashing the cymbals while snapping at the politicians heels demanding ‘clean energy’ and an end to ‘carbon pollution’. This is the modern ‘left’ in action. Its the Democratic Party in the US, the moneyed elite in the UK and an unholy alliance of Labour, The Greens and the soft underbelly of the Liberals in Australia. Even the Chinese, who in many ways are very practical people, seem to have fallen in love with this idea. If you muzzle the press, put the intellectuals in prison and rule with an iron fist you can do whatever you bloody well like. Can we pretend that what is happening in the West is somehow preferable? Can we point to a more rational and beneficial result from our ‘democratic process’? Cast not the first stone.

A PLAUSIBLE EXPLANATION

The warming of the northern hemisphere in both winter and summer starts in about 1998. Bear in mind that the warming in southern winter occurs at a time when global cloud cover plummets as the large land surfaces of the northern hemisphere heat the atmosphere. Is that warming  due to an increasing ozone content of the air and a consequent decline in cloud cover?

Figure 2 confirms a step up in temperature at the 10 hPa pressure level after 1976. This is predominantly a southern hemisphere phenomenon.  The step up occurs in winter.The consequent much enhanced feed of ozone into the  high pressure zones of descending air over the global oceans would reduce cloud cover. Under normal circumstances 90% of global cloud cover is to be found over the oceans and this is where high pressure cells form, especially in summer. When ozone rich air descends in a high pressure cell, the air warms (geopotential height increases) and this is always, without exception, associated with warming at the surface.So, the warming is due to loss of cloud cover.

Raw 10 hPa T poles
Fig. 2.  10 hPa temperature near the poles

Now, I want you to sanction something quite unorthodox and shocking.

In figure 2 the hand drawn line that links the high points in the summer maximum in the northern hemisphere is copied and applied to the northern minimum and to both the minimum and the maximum in the southern hemisphere. This unsophisticated ‘sleight of hand’ is performed as a ‘seeing aid’ to discern the points of difference. I guess I am just a frustrated artist and the mathematical exactitude of Excel is humanised by this process.I was once told by a plant breeder that if you cannot see the difference in plant performance by eye that difference is not worth measuring. It’s somehow comforting to realise that we don’t always need mathematical manipulations in order to get to the nub of the question.

Some points to note:

  1. Winter minimums are more variable than summer maximums and particularly so in the northern hemisphere.
  2. Whole of period change at 10 hPa  is greatest in the Antarctic. Those who make a close study of the matter have worked out that this is where natural climate change begins. Here is the documentation: Antarctica is the source of natural climate change.
  3. At the surface, the widest range in temperature between summer and winter is seen in the northern hemisphere but that is not the case at 10 hPa.  It is the southern hemisphere that exhibits the big variations.

Now in the last point we have an anachronism and a clue.  See Figure 3.

The wide range in temperature at 10 hPa in the southern hemisphere is due to the variable intake of mesospheric air over Antarctica in winter. This intake of cold air cools the upper stratosphere. It does not affect the temperature of the air at elevations below 300 hPa. The deepest cooling occurs at the 30 hPa pressure level in July.  Why is it so?

In winter surface pressure in the Antarctic region reaches a resounding planetary high. Nowhere else, anywhere on the globe, in any season of the year does surface pressure approach that achieved over Antarctica in winter. Air from the mesosphere has a low ozone content and it dilutes the ozone content of the atmosphere generally.The enhanced flow of mesospheric air into the southern hemisphere causes a generalised deficit in the ozone content of the air in the entire southern hemisphere. Alternatively, when the flow is choked off (surface pressure rises) there is an increase in the temperature of the air and its ozone content.

It is easy to see how the ozone content of the air can change over time via an alteration in the mesospheric flow.

Polar column temperatures

TEMPERATURE VARIABILITY

See figure 4 below. The short term variability that is seen in Arctic is much enhanced after February. It is initiated  by a fall in polar surface pressure signalled by a rise in the Arctic Oscillation Index (the two are inversely related). This increase in 10 hPa temperature  is likely reinforced in amplitude and duration by an increase in ozone partial pressure due to enhanced penetration of ionising cosmic rays as the stratosphere warms. The build up in the temperature over the polar cap is avalanche like in its suddenness. It represents the displacement of cold mesospheric air. The heating effect,  observed to last for weeks at a time, requires amplification to persist in this way. Otherwise it would be gone in ten days. Without amplification the descent of mesospheric air should re-establish in short order . Patently it does not.

T strat and AO 10hPa

Figure 4. Mean temperature at 10 hPa compared with the Arctic Oscillation Index.

In Fig. 2 we observe little difference between the hemispheres in the evolution of 10 hPa temperature in summer. There is a slight step up in 1976. And, the step up in summer is greater in the south than the north.The change in the ozone content of the atmosphere is global, affecting the entire year  and it is related to a fundamental change in the atmospheric circumstances over Antarctica, most pronounced in the winter season.

The ozone content of the air is rapidly propagated across the globe as we will see in figures 6 and 7 below. This testifies to the strength of horizontal winds in the stratosphere and most particularly in the area of overlap where stratosphere and troposphere occupy common ground.

So, the standout anomaly in figure 2 is the step change in 10 hPa temperature in southern winter after 1976. This step change in 10 hPa temperature is reflected  in surface pressure data in figure 5 below.

In fact this step change in 1976 is  reflected surface temperature data at every latitude across the entire globe as documented here.

SLP 75-90S

THE ACTIVE INGREDIENT:OZONE

As Gordon Dobson discovered in the 1920’s surface pressure  is a reflection of the ozone content of the air and vice versa. The fall in surface pressure at 75-90° south latitude documented in figure 5 is a direct consequence of the increase of the ozone content of the air. It is the ozone content of the air that affects its density, the weight of the entire column and hence surface pressure.

Wind strength in the atmosphere is intimately connected with the ozone content of the air. The air is relatively still near the surface of the planet and also at the highest elevations. Wind velocity is most enhanced in the overlap between the stratosphere and the troposphere between 300 hPa and 50 hPa where abrupt change in the height of the tropopause is associated with jet streams.

The 10 hPa level is virtually the top of the atmosphere because 99% of atmospheric mass is below that pressure level. The rapidly ascending circulation at the pole elevates ozone producing the greatest temperature response at the highest elevations as is evident in Fig 6. The strong temperature response at 10 hPa is due to convection of ozone rich air that increases ozone partial pressure at the highest elevations. That ozone mixes across the profile and affects the ozone content of the air in descending circulations in mid and low latitudes.

The pressure gradient (density differential) across the vortex in the upper troposphere/lower stratosphere where polar cyclones are initiated determines the strength of convection.  The density differential is increased seasonally as the ozone hole is established below 50 hPa when NOx rich air from the upper troposphere is drawn into the circulation over the polar cap during the final warming of the stratosphere.

The incidence of very much higher temperature at the 10 hPa pressure level after 1978 represents a step change in the fundamental parameters of the climate system.  There is not one climate system here but many, as many as there are days in the year. Changing the ozone content of the air in high latitudes alters surface pressure differentials and therefore it changes the planetary winds.

Temperature
Fig. 6

A QUESTION OF TIMING

In figure 7 below we chart the evolution of 10 hPa temperature  in selected months from the mid latitudes to the southern pole.

10 hPa T SH
Figure 7 The evolution of air temperature at the 10 hPa pressure level in high latitudes

10 hPa temperature over the pole is greater at 80-90° latitude than at lower latitudes in summer. This is when mesospheric air is excluded and ozone rich air gently ascends to the top of the atmosphere. This phenomenon occurs over Antarctica between October and February.

10 hPa temperature over the southern pole is inferior to that at lower latitudes when mesospheric air is drawn into the circulation between March and October.

After 1978 we see a change in the temperature profile in all months. This is particularly so from June through to November. The transition month for the final warming prior to 1978 was November. After 1978  the transition occurs  in October. Taken all-together this data indicates  a fundamental change in atmospheric dynamics that inevitably produces an increase in surface pressure, geopotential height and surface temperature in mid and low latitudes.

This is the source of the warming in southern winter. It has nothing to do with the works of man.

The change in the temperature of the air at the 10 hPa pressure surface in the Arctic is a product of the combined influence of atmospheric dynamics at both poles. The Arctic is  independently influential.  Its calling card is extreme temperature variability in January and February. This can be seen in Figure 1 in the surface temperature in the coolest months.

Climate change is a matter of observation and common sense. There is not much of it about. When it comes to numbers there are Lies, Damned Lies and Statistics. Undoubtedly the leading offender is the global average of surface temperature as disseminated by GISS, The NOAA  and the Hadley Centre, all dedicated to the dissemination of information in support of the nefarious activities of Global Green and the UNIPCC.