Reflection of sunlight from cloud at 5-8km in elevation (Cirrus).

https://earthobservatory.nasa.gov/IOTD/view.php?id=90269&src=eoa-iotd

Quote:

The EPIC data also helped confirm that the flashes are coming from a high altitude, not simply water on the ground. Two channels on the instrument are designed to measure the height of clouds. According to the observations, high cirrus clouds—5 to 8 kilometers (3 to 5 miles) up in the atmosphere—appeared wherever the glints were located.

“The source of the flashes is definitely not on the ground,” Marshak said. “It is definitely ice, and most likely solar reflection off of horizontally oriented particles.”

Marshak is now investigating how common these horizontal ice particles are, and whether they are common enough to have a measurable impact on how much sunlight passes through the atmosphere. If so, it is a feature that would need to be incorporated into computer models of how much heat is reaching and leaving Earth.

Perhaps we should admit that it will take time to get ‘the science’ properly settled.

There is a notion in IPCC  ‘climate science’ that high altitude cloud has a warming influence on the surface.    A manurial notion if ever there was one.

As to whether there will be ice cloud at elevation or not….then the ozone content of the air will be a factor of importance because ozone absorption of infrared from the Earth itself determines air temperature and therefore relative humidity and the degree and extent of precipitation.

Progress

If one appreciates the way in which the planet has warmed in some places and not in others, the way it warms in winter rather than in summer, the way it warms in fits and starts then, the thesis that the warming relates to the steadily increasing proportion of so called ‘greenhouse gases’ in the atmosphere must be seen to be implausible. If one appreciates that the high latitudes of the southern hemisphere are cooler today than seven decades ago, then it is obvious that there are more influential factors at work. If one appreciates that the entire southern hemisphere is no warmer today in the month of December than it was in the nineteen fifties then a sensible person would have to conclude that something other than the ‘enhanced greenhouse effect’ is at work. The  change in surface temperature is plainly not due to enhanced back radiation alone, if at all.

Indeed there are natural factors at work that have nothing to do with the activities of man. THE FUNDAMENTAL modes of natural climate change have been termed the Northern Annular Mode and the Southern Annular Mode. These modes involve shifts in atmospheric mass from high to mid and low latitudes and across the hemispheres accompanied by change in surface pressure, the winds and surface temperature.

Surface pressure simply reflects the total ozone content of the atmospheric column, an identity that was discovered more than 100 years ago. Ozone is material to the presence of what we call the stratosphere. It is change in the ozone content of the stratosphere that is responsible for change in surface pressure, surface winds, sea surface and air temperature.

I abandoned this blog for months while engaged in a project that demanded my full attention. During this period the election of Trump to the presidency of the USA and the appointment of men who understand that cheap and reliable energy is a requirement for economic growth and sustained living standards has led climate realists to think that the tide of manipulation designed to promote the idea of  ‘renewables’ will been turned back and we can at last relax.

The last few days have been spent on the flat of my back. With little else to do I went to Google to discover whether any progress has been made in explaining the role of the annular modes …and indeed there has, but in Beijing, not in Washington or Colorado.

I direct the reader to this page: http://ljp.gcess.cn/dct/page/65558

It is a treasure trove of useful observation and deduction.

A paper published in December 2016 is of the first importance

Xie, F., J. Li*, W. S. Tian, Q. Fu, F. F. Jin, Y. Y. Hu, J. K. Zhang, W. K. Wang, C. Sun, J. Feng, Y. Yang and R. Q. Ding, 2016:A connection from Arctic stratospheric ozone to El Niño-Southern oscillation. Environ. Res. Lett., 11, doi:10.1088/1748-9326/11/12/124026.

The paper can be accessed here: http://ljp.gcess.cn/thesis/files/Xie_2016_Environ._Res._Lett._11_124026.pdf

What is known as the El Nino Southern Oscillation represents the most spectacular manifestation of surface temperature change. This phenomenon has been described as an ‘oscillation’ that is said to be internal to the climate system. Not so. It has its origin in change in the stratosphere in high latitudes that is the subject of previous chapters in this blog. The most dramatic swings in the ozone content of the stratosphere occur in the northern hemisphere in winter.The poles are where climate change is initiated.

The authors conclude that: ‘understanding this kind of connection and potential feedback between the stratospheric tracer gases (such as ozone) and the climate system deserves more attention.’

I concur.

It’s one thing to identify the chain of causation and another to understand and explain the physical processes behind it. It’s yet another to explain how and why ozone varies in the polar stratosphere and to explain the drivers that operate in the upper atmosphere where the Earth system is a part of the interplanetary environment. This is the real frontier in climate science.

There is no great urgency to discover and describe the mechanisms involved, no pressing need for massive funding unless humanity is led astray by false prophets. We can expect that those who have a vested interest in continued funding of their ‘global warming’enterprise will put up vociferous arguments to try and justify their claims. End of the day, the voters decide how their taxes are spent and it appears that, when offered a clear alternative, voters can work out when they are being ‘had’ and adjust accordingly. It’s possible to fool some of the people some of the time but not all of the people all of the time.

Let’s hope the tide has turned.

Its a worry that ‘global warming’ hysteria got as far as it did and did as much damage as it did before people woke up to what has been happening.

42 THE WARMING OF THE INDIAN OCEAN. THE CANARY IN THE COAL MINE

CAUSE OF WARMING

In general the planet warms as surface pressure increases in low and mid latitudes.

The chain of causation runs like this: Increased surface pressure is associated with increased geopotential height, extra warmth in the atmospheric column and a consequent reduction in the quotient of moisture held in the very expansive ice crystal form. As cloud cover diminishes more solar radiation reaches the surface of the planet. When energy is absorbed by the ocean it is stored to depth and, by virtue of ocean currents, re-distributed, fortuitously warming those parts that receive little solar energy.

In contrast, when solar energy falls on land it is swiftly, in the main overnight, returned to the atmosphere. The warming of the atmosphere that is occasioned in northern summer, due to the extensive land masses of that hemisphere,  results in a global deficit of cloud cover in the middle of the year producing the annual maximum in planetary temperature when the Earth is furthest from the sun and solar irradiance 6% diminished by comparison with January.  It should be obvious (how did climate scientists miss this?) that the primary dynamic determining surface temperature is the temperature of the atmosphere in relation to the moisture that it contains.

REDISTRIBUTION

Please inspect the map below. The planetary winds drive ocean currents that mix cold waters from high latitudes and the ocean deep into the warm waters of the tropics. This is evident on the eastern margins of the oceans and particularly so in the southern hemisphere. The Indian Ocean is the odd man out with a weak cold current on its western margins and a warm, southward travelling, current on its eastern margin. The consequence is a relative backwater that is less  affected by the mixing of cold with warm water.

global-sst

It follows that the circulation of the oceans results in a very different thermal regime in each basin according to the  the ocean currents that are primarily driven by the winds. As the winds evolve, so do the currents.

The table below documents the extent of the temperature increase  over the last 68 years according to latitude and longitude in the three major ocean basins. For economy I focus on those latitudes that are warm enough to be relatively hospitable  to man.

sst-in-numbers

It is obvious that the bulk of the Pacific Ocean has not warmed to the same extent as the Indian and Atlantic Oceans. In terms of basin averages, in January the Indian Ocean has warmed by 0.87°C, The Pacific by 0.42°C and the Atlantic by 0.46°C. In July the Indian has warmed by 0.84°C the Pacific by 0.12°C and the Atlantic by 0.6°C. It is in July that the contrast between the oceans is strongest.It is the Indian Ocean that has warmed to the greatest extent.

THE SURFACE PRESSURE DYNAMIC

annual-slp

If we are to understand the differences in the rate of warming of the Ocean basins we need to comprehend to role of polar cyclones in high latitudes. Enhanced polar cyclone activity in the Antarctic circumpolar trough (red and orange in the map above) has, over the period of record, shifted atmospheric mass into low and mid latitudes from latitudes south of the 50° parallel. In consequence the high latitude west wind drift that is coextensive with the circumpolar trough, that drives cold water into the tropics, has accelerated. The flow is restricted at the Drake Passage between the Pacific and the Atlantic. Accordingly the Pacific Ocean cooled in parts and generally warmed at a much reduced rate when compared to the Indian and Atlantic Oceans.

drake-passage

The Indian Ocean is like the canary in the coalmine, a companion to the miner to warn him of a change in the quality of the air. The evolution of surface temperature in the Indian Ocean offers a glimpse of unfettered reality in terms of the march of surface temperature across the globe as it is forced by change in cloud cover associated with shifts in atmospheric mass and the change in the planetary winds.

The remainder of this chapter explores the shift in atmospheric mass from high southern latitudes and its relationship to surface pressure in the rest of the globe and the Indian Ocean in particular.

The discussion is is not based on the hypothetical constructs of a climate model or the abstruse mysteries of so called ‘planetary forcings’.  Rather it is grounded in observation and measurement based on data as  presented in the reanalysis work of Kalnay et al accessible here.

The graph below represents the evolution of surface pressure in the Indian Ocean south of the equator.We must to answer the question: Why is it so?

slp-indian-ocean-south-of-equator

WHY WORRY

The entire southern hemisphere has not warmed in the month of December in the last 68 years. If surface temperature were being forced by increased back radiation from the atmosphere the southern hemisphere should warm in all months.  There is no reason to expect the degree of warming due to a hypothetical increase in back radiation to be different in one month to another.  We therefore discard the hypothesis that temperature at the surface is driven by the carbon dioxide content of the atmosphere.  We look for other mechanisms to explain the flux in surface temperature. Radiation theory is all very well but in the real world, inoperable. The concept of anthropogenic warming is a distraction from fairyland. We can, to advantage, be more discriminating in what we choose to believe.

SURFACE PRESSURE DYNAMICS

sh-high-lat-surface-pressure
Figure 1 Sea level pressure in the region of the Antarctic circumpolar trough compared to sea level pressure in the entire region south of 50° south latitude.

Figure 1 compares the evolution of sea level atmospheric pressure in the Antarctic circumpolar trough to all latitudes south of 50° south. It is plain that the relatively short term fluctuations in surface pressure in the larger entity are greater than in the ‘trough’. In point of fact the trough expands and contracts across the parallels affecting surface pressure in adjacent latitudes and in particular across the Antarctic continent. The agent of change is polar cyclone activity that is energised by differences in atmospheric density between very different parcels of air that meet in the region of the trough in the very broad interface between the stratosphere and the troposphere between about 400 hPa and 50 hPa. It is in this region that the strongest winds are to be found. Polar cyclones are generated aloft. This is the nature of the ‘coupling of the troposphere with the stratosphere’, a concept that is a postulate of conventional climate science but remains a mystery so far as its modes of causation is concerned. If one is wedded to radiation theory it limits the mind.

slp-50-90-s-and-90n-to-50s
Figure 2 twelve month moving averages of sea level pressure either side of the 50° south latitude band encompassing the globe as a whole.

In figure 2 we compare the evolution of surface pressure south of the 50° south  parallel of latitude with surface pressure north of that same parallel. If the total mass of the atmosphere were to be invariable we would expect a strictly reciprocal relationship. As pressure falls on one side of the 50th parallel it should rise on the other. Plainly, the increase, decrease and subsequent increase in surface pressure in concert, between 1948 and 1964, is evidence of a planetary evolution in the quantum of atmospheric mass perhaps associated with enhanced loss in very active solar cycles and incremental gain in quiet cycles. That is a subject for another day.

Plainly, since 1964 it is the reciprocal transfer relationship that dominates. When atmospheric mass is lost south of the 50th parallel it moves north the 50th parallel and vice versa.This process of exchange is referred to as the Antarctic Oscillation.

slp-indian-versus-90n-50s
Figure 3

In figure 3 we compare the evolution of surface pressure in the Indian Ocean south of the equator through to 30°of latitude with that north of the 50th parallel.

indian-versus-90n-70-50s-two-axis
Figure 4

Figure 4 presents the same information as in figure 3 but on two axes with independent scales. It’s plain that broadly speaking the Indian Ocean south of the equator gains and loses atmospheric mass in parallel with all points north of the 50th south parallel but there are short term differences. These discrepancies are likely due to complex interactions between the southern and the northern hemispheres where, depending on the time of the year the Arctic Oscillation imposes change in the southern hemisphere or in the reverse, the Antarctic Oscillation imposes change on the northern hemisphere, tending to produce ‘mirror image’ results. Short term variations in these two data series  can be in opposite directions.

sst-indian

Figure 5

In figure 5 we compare the evolution of sea surface temperature in the Indian Ocean north of the equator  with that south of the equator.  The data is a twelve month moving average of monthly  means so as to remove the seasonal influence. It is plain that the more extreme variations occur north of the equator. Nevertheless the series are very similar in their evolution with generally coincident peaks.

sst-and-slp
Figure 6

In figure 6 we compare the evolution of sea level pressure in the Indian Ocean to the south of the equator with the evolution of sea surface temperature in the Indian Ocean north of the equator. Sea surface temperature tends to lag surface pressure by a few months. Plainly the Antarctic Oscillation affects sea surface temperature via coincident heating of the atmospheric column as reflected in increased geopotential height driving a reduction in cloud cover.

indian-ocean-sst-and-gph
Figure 7

Figure 7 looks at the relationship between geopotential height and sea surface temperature. Note that geopotential height is strongly related to sea surface temperature but the relationship is  not proportional. It is not the increase in sea surface temperature that drives the increase in geopotential height but warming of the air column due to the increase in the ozone content of the air within descending columns of air. These air columns reflect in their temperature the increased surface pressure, the increased warming at the surface and the increase in the ozone content of the descending air. At 200 hPa the air is warmer in winter than in summer due to enhanced ozone content in winter. The temperature of the air is independent of the temperature of the surface over which it lies.

slp-and-sst-monthly-indian
Figure 8 Sea level pressure in the Indian Ocean south of the equator compared to sea surface temperature north of the equator. Temperature lags pressure.by several months. There is pronounced warming in southern hemisphere winter months and occasional warming cycles in the summer months, notably in 2009-2010 and 2012- 2013. This warming is tied to the ozone content of the air in high latitudes.

In figure 8 we focus on monthly data.  Shown is the departure of a particular month’s data from the whole of period average for that month.

This graph reveals a climate system that is capable of swinging between a sea surface temperature anomaly of about -0.3°C and +1.2°C in an interval of between one and six years. The amplitude of this variation is almost double the increase in temperature that has occurred in the Indian Ocean over the last 68 years.  In this circumstance we should simply move on. There is nothing exceptional about this increase in temperature. There is no need to invoke new modes of causation to explain this phenomenon.

RECAP

Why has surface pressure and sea surface temperature in the Indian Ocean increased almost continuously since 2011? The answer lies in the forces that determine polar cyclone activity in the Antarctic circumpolar trough. Those circumstances relate to the  changing nature of the atmosphere in the area of overlap between the stratosphere and the troposphere in high southern latitudes.

As Gordon Dobson observed back in 1925, surface pressure is a by-product of total column ozone. Low pressure cells have more ozone aloft and exhibit a lower tropopause than high pressure cells.

Ultimately polar cyclone activity and surface temperature together with wind direction and intensity and the extent of mixing in the ocean  are a function of the ozone content of the air in high latitudes.

41 WIND AND WATER

This post addresses questions of interest namely:

  1. To what extent is the temperature of the surface of the sea simply a reflection of a variable rate of mixing of the volumes of cold water from high latitudes and the deep ocean into the warmer waters of low and mid latitudes?
  2. To what extent is the variation in surface temperature due to a change in cloud cover?
  3. To what extent is the variation in surface temperature due to a ‘greenhouse effect’ as the carbon dioxide content of the atmosphere increases?

At the outset we can dismiss the notion that a greenhouse effect drives surface temperature.  The Southern Hemisphere has not warmed in December for seven decades.  In logic (science) one instance of failure is  sufficient to reject a hypothesis. If one persists with a failed hypothesis one is engaged in a religious observance rather than science.

Figures 1 a,b,c and d are tendered in support of this observation

1000-hpa-t

Hemisphere surface temp

SH SST

sst-jan-and-june

Figure 1 a, b, c and d. data source Kalnay et al reanalysis here. The arrow in 1d is horizontal.

It is plain from the data in figure 1 c that temperature evolves differently according to the month of the year, that it increases and decreases and the rate of change is highly variable.

If we are to understand climate change, it is the highly variable evolution of surface temperature from month to month that we need to explain.

EVOLUTION OF TEMPERATURE ACCORDING TO LOCATION AND TIME

To investigate the mixing of cold with warm water and temperature change due to cloud effects, it is useful to look at raw data that describes the surface temperature of the ocean at a moment in time.

The Earth can be divided into discrete zones according to latitude and longitude. Figure 2 represents one of these zones at 30-40° north latitude. Plainly, there are zones in the North Pacific Ocean where temperature has declined over the last seventy years.

30-40-north-pacific-ocean
Figure 2

For this analysis the globe can be divided into twelve zones according to longitude in each of four latitude bands namely 30-40° south, 0-30° south, 0-30° north and 30-40° north. In zones dominated by land data is not reported. The upshot is that there are twenty nine zones with large bodies of water to consider.

Figure 3 shows sea surface temperature on the 17th of September 2016.  Superimposed are numbers indicating whole of period change for both January and July, the two months that are known to exhibit the greatest variability. Note that it is the change in the Excel calculated trend line that is reported here rather than simply the difference in the temperature between the first and last month.

sst-increase
Figure 3

For clarity the data is presented again in table 1.

sst-in-numbers

Table 1

If we consider increases of 0.9° C and more as notably extreme, it is in the southern hemisphere in the 0-30° latitude band and the 30-40° south latitude bands that  extreme warming  is observed. Look for the numbers in white on the map and the cells in yellow  in in table 1..  Change smaller than 0.2°C is marked in green and enclosed with a border.

Generalising we can say that temperature advance is more a southern than a northern hemisphere phenomenon. Between the equator and 30° south the increase in January is notable. At 30-40° south the increase in June is notable. The Pacific is both peaceful and more stable in its temperature than the Indian and Atlantic Oceans. Some areas of the Pacific are cooler today than they were seventy years ago.

Why does temperature change exhibit such diversity?

WIND AS DRIVER

The lowest surface atmospheric pressure  occurs in the Antarctic circumpolar trough that is located over the Southern Ocean on the margins of the Antarctic continent. There is no counterpart to this extreme trough in surface pressure in the northern hemisphere where moderately low surface pressure is found over the continents in summer and the sea in winter. Accordingly, across the entire globe, including the tropics, air moves towards the south east, spiralling towards the Antarctic circumpolar trough. Locally, counter currents exist with the movement of the air in other directions but this north- west to south- east flow is the dominant pattern. Part of the counter flow is moist air that moves from the equator into mid and high latitudes, especially in the northern hemisphere, bringing moisture and warmth to cold locations far from the equator. This is a counter flow to the trade winds and without this flow high latitudes would be both colder and drier. Counter flows are in part monsoonal in nature but they also derive from the fact that on a local scale, air circulates about cells of low and high surface pressure.

The strongest winds on the planet are the westerlies of the southern hemisphere. These are also the most variable winds due to the ever changing relationship between surface atmospheric pressure in the mid latitudes and the Antarctic circumpolar trough. This westerly flow has become progressively more extreme over the last seventy years. Oscillations in the flow are consistent with change in the ‘Antarctic Oscillation index’. This change, that is globally influential, is driven by the changing intensity of cyclonic activity in the Antarctic circumpolar trough.

With the notable exception of the Indian Ocean, currents circulate in a clockwise direction in the Northern Hemisphere and anticlockwise in the Southern Hemisphere. Currents are forced by the planetary winds. Since the strongest of these winds are the westerlies of the Southern Ocean, this is where the movement of the ocean is most vigorous. The West Wind Drift of the southern ocean is interrupted by the near conjunction of the South American land mass and the Antarctic Peninsula. A certain amount of up-welling occurs in coastal waters promoting strong fisheries on the Eastern margins of the Oceans, particularly off the coast of Chile. A failure in this up-welling involves a collapse in the fishery. The intensity of up-welling changes the pattern of surface temperature and as we see in table 1 the effect is very much greater in the Pacific.

Notable is the northward extension of warm waters to provide a more equable climate to the western margins of the ocean basins in the northern hemisphere. Because these flows  are anomalously warm as they reach the eastern margins of the ocean basins, so the western margins of both North America and Europe are warmer than they would be in the absence of these warm waters. The Gulf Stream is an instance but the Eastern Pacific is equally an example. There is no comparable situation in the southern hemisphere because the northward flow of cold Antarctic waters on the western margins of the southern continents is deterministic.

Limiting this tendency to equable temperatures on the eastern margins of the major oceans, cold water from high latitudes is driven towards the tropics. This is particularly the case in the Pacific (the largest basin) and more particularly in the southern hemisphere. Anomalously cold water is therefore found in the region of the Galapagos Islands and also from Cape Town to Sierra Leonie. Cold water coursing along the coast towards the equator tends to promote precipitation over the ocean rather than the land,and the desertification of adjacent land.

In complete contrast, the Western coast of Western Australia is warmed by a southerly flowing current.  The Indian Ocean is atypical in that it circulates weakly in an anticlockwise direction with anomalously cool water moving northwards along the East coast of Africa penetrating to the Persian Gulf and the coast of India. Perhaps it is the strength of the monsoonal influence in this part of the world that dictates this contrary circulation.  Accordingly the relative backwater that is the Indian Ocean has produced the steepest increase in sea surface temperature over the last seven decades. There is an increase of 1.3°C between Africa and Australia in the 0-30° latitude band in the month of January.  The Atlantic south of the equator, also exhibits a temperature increase of about 1°C with an increase of 1.3°C on the west coast of the African continent, again in the southern hemisphere.

The pattern of warming and cooling is of interest because it comes about via the joint influence of the change in cloud cover, change in the rate of admixing of cold waters from high latitudes and the up-welling of cold water from the ocean deep. Plainly the rate of temperature increase in the Pacific has been  moderated and even reversed by comparison with the Indian and Atlantic Oceans.

As already noted, the increase in the temperature of waters south of the equator is greater than the increase in the temperature of the waters of the northern hemisphere in comparable latitudes. This increase has occurred despite the obvious cooling influence due to the West Wind Drift that is so apparent in the Pacific. This exaggerated surface temperature increase is consistent with the marked increase in surface pressure, geopotential height and upper air temperature in the low and mid latitudes of the southern hemisphere. A southward expansion of the zone of high surface pressure in the mid latitudes of the southern hemisphere can be described as an expansion of the Hadley Cell. So the heavy temperature increase in these latitudes is unequivocally due to a decline in cloud cover.

But there are large areas across the Pacific and Atlantic Oceans that have experienced smaller increases in temperature and others zones where a decline in temperature has occurred due to the admixture of cold water with the intensification of the planetary winds that has occurred over time. In June there is significant cooling at 30-40° north probably due to enhanced interaction with the Arctic Ocean. The corollary is a decline in ice coverage in the Arctic. This cooling follows from the acceleration of the westerly winds in high latitudes, and especially so in the southern hemisphere.

SEA SURFACE TEMPERATURE, ATMOSPHERIC PRESSURE AND CLOUD

The relationship between surface pressure and sea surface temperature is documented in figure 4.

SST and Surface pressure 1
Figure 4

The root cause of the increase in surface pressure in the low and mid latitudes of the southern hemisphere is the decline in surface pressure in the region of the circumpolar trough that surrounds Antarctica. This is in turn related to the increase in the ozone content and the temperature of the stratosphere. As Gordon Dobson observed in the 1920s, following on from the work of  the pioneering French meteorologist deBort in the last decade of the 19th century, surface pressure is a reflection of the ozone content of the upper portion of the atmospheric column. As surface pressure falls away the tropopause is found at ever lower elevations. Differences in air density between air masses rich and poor in their ozone content gives rise to jet streams that manifest as polar cyclones at the surface.  As the vorticity of polar cyclones within the Antarctic circumpolar trough varies, so surface pressure changes across the rest of the globe via mass exchange. A fall in pressure in the Antarctic trough signals a shift in atmospheric mass to latitudes north of about 50° south. It is this shift in mass that is associated with the rising air temperature and diminishing cloud cover in the low and mid latitudes of both hemispheres.  Declining cloud cover is associated with rising air temperatures in the cloud zone reflected in increasing geopotential height at 500 hPa. This particular association is frequently the subject of comment in meteorological circles. Ozone is ubiquitous; ozone gathers infrared energy from the Earth itself and heats the air, its efficiency in this respect increasing with surface pressure. It provides more energy to the troposphere than it does to the stratosphere. In this way the extent of cloud cover depends upon the changing flux of ozone in the air.

To understand the evolution of climate we must discard propositions that are devoid of value and re-learn that which was pioneered more than a century ago.

CONCLUSION

Of major importance to the evolution of surface temperature are ocean currents that depend upon the planetary winds for their motion.

The origin, temperature and humidity of moving air changes according to the flux in the ozone content of the air in centres of low surface pressure. Change is initiated in the stratosphere in high latitudes chiefly in winter. This is ultimately what drives climate change at the surface with a very different pattern of temperature change according to the month of the year. Man is a minnow of little consequence in the grand scheme of things.

In general the pattern of evolution in surface temperature in the near coastal areas of those parts of the Earth favourable to human settlement is dictated by the interception and storage of solar energy by the oceans as mediated by cloud cover.  Temperature change at particular locations is mediated by the movement in the waters of the oceans that represent most of the surface of the planet. The oceans are the chief organ for energy storage by virtue of transparency to solar radiation.  Energy storage occurs below the surface. Our ability to monitor the temperature of the ocean below the surface is limited. Until we can assess temperatures below the surface there is no valid way to monitor the energy relationships that determine the evolution of temperature above the surface. One should not put too much reliance on surface temperature as an indication of the state of the system over intervals shorter than a decade.

The anthropogenic argument is not a product of observation or deduction but a form of hysteria. Its origin is in the dis-tempered gut of modern man, reeling from the pace of change and the pressures of urban living. Perhaps it is due to a feeling of helplessness in a world in which there is more regulation, more complexity, greater inter-dependence and perhaps a feeling of chronic uncertainty due to the fact that ever increasing numbers enjoy less of the fruits of their toil, governments are piling up debt and seem to be out of touch with the needs of the common man.

In a planet that is too cool for both comfort and productivity man should not worry when the surface warms slightly, a frequent and highly beneficial circumstance in the evolution of the Earth. When we start shedding clothes in winter because we need to cool down, that will be the time to worry.

Worry induces a search for remedies and mankind becomes susceptible to the wiles of multitudes of carpetbagging rent seekers, keen to exploit the situation. That, unfortunately is the situation.  Too many carpetbaggers have staked a claim on the general revenue. Central banks fund ever increasing deficits creating spending power where none is earned. This is irresponsibility on a grand scale. The economic system appears to be lurching towards a catastrophic collapse.