Fig. 1 Sea surface atmospheric pressure in January Source here

Even in the height of summer we see a marked trough in surface pressure on the margins of Antarctica, a product of polar cyclone activity driven by differences in the ozone content of the air and resulting differences in air density. Of course, the contrast  between the coldness of the ice bound continent and air from the mid latitudes also helps but at 200 hPa where these cyclones are generated the contrasts seen at the surface are less apparent. Surface contrasts probably assist in allowing the upper air troughs to propagate to the surface but where these contrasts don’t exist as in Arctic summer the propagation from upper air troughs to the surface to create a polar cyclone still occurs.

January pressure
Fig 2

In winter atmospheric pressure increases in the mid latitudes of the southern hemisphere increasing the differential pressure between the mid latitudes and 60-70° south. Surface pressure over Antarctica hits a planetary maximum.

July pressure
Fig. 3  Source of data for FIgs 2 and 3  here:

Figures 2 and 3 show the swings in pressure that are part of the annual cycle and the evolution of pressure over time. Mainstream climate science (is there any other) has yet to realise the importance, let alone account for the cause of that massive deficit in surface pressure in the ocean about the margins of Antarctica. ‘Climate science’ is yet to become aware  of the cumulative effect of the decadal slips in surface pressure and is incapable of making the connection with the ‘annular modes phenomenon’ or working out that the atmosphere is driven from the poles rather than the equator, let alone working out the mechanisms involved.in change. Perhaps this is because the bulk of the land mass and the population of the globe together with most of the money is in the northern hemisphere and perhaps because the Earth is round the incumbents can not see over the equatorial horizon?


SLP 80-90S by month
Fig. 4 Source of data here.

In FIG 4 the year to year variability is perhaps due to change in the rate of intake of mesospheric air into the stratosphere as it modulates the partial pressure of ozone above the 300 hPa pressure level.  The change in surface pressure  is greatest in Antarctica but it  impacts the global atmosphere from pole to pole. The southern hemisphere vortex is most influential in determining the ozone content of the air between June and November and the northern vortex between November and April.

AO and AAO
Fig 5 Source of data here.

The Arctic Oscillation and the Antarctic Oscillation indices are proxies for surface pressure over the pole. As they fall, we know that surface pressure rises over the pole. We see in fig. 5 above that a rise in the AAO, signalling a fall in surface pressure in the Antarctic forces an increase in surface pressure in the Arctic between June and November whereas the weaker, poorly structured and migratory northern vortex seems to be incapable of the same performance when it is active in northern winter. Perhaps our measurement  settings are not capturing it adequately.

The replacement of low ozone content air with high ozone content air consequent on a stalling of the intake of mesospheric air brings an increase in the temperature of the stratosphere. The greater the elevation the greater is the increase in temperature, a natural product of the fact that ozone is the agent of convection and it is ozone rich air that is lifted to the limits of the atmosphere.   This amplified response is documented at 80-90° south latitude in figure 6 below.

T of Sth Strat at 80-90S Lat
Fig 6 Source of data here.

Plainly, the largest response to an increasing presence of ozone is at the highest elevations. There has been a fundamental change in the temperature profile over the polar cap with a massive shift  from 1976 to 1978. Note that prior to this date the temperature at 10 hPa was little different to that at 200 hPa. The 200 hPa level is Jet stream altitude.What happens at 200 hPa determines the synoptic situation and is reflected at lower altitudes albeit, softened and smoothed due to the fact that not all activity at 250 hPa propagates all the way to the surface. Upper level troughs are cyclones that are insufficiently strong to  propagate all the way to the surface.But the point to be aware of is that the temperature profile between 200 hPa and 10 hPa is fundamental to the dynamics determining the movement of the atmosphere over the pole that relates to the timing of the final warming.


Another way to assess the impact on the Antarctic stratosphere is via a whole of period assessment of temperature variability at 10 hPa according to the month of the year. To examine this each months temperature is ordered from highest to lowest regardless of the year attached to the data and the difference between the highest and lowest is derived. That difference is graphed In Fig. 7

Variability in 10hPa temp by latitude
Fig 7 Source of data here.

It is plain from  Fig 7 that in the period between 1948 and 2015 temperature variability in high southern latitudes is greatest between July and October. At lower latitudes variability is strongest in June or at the start of the year. The skew towards October reflects the impact of a developing ozone hole below 50 hPa that is forced by the intake of troposphere air containing the ozone destroyer, NOx that is drawn in laterally between 100 hPa  and 50 hPa like a gradually tightening hangman’s noose that by September occupies the entire polar cap. Very cold air drawn in from the equatorial upper stratosphere is as cold as air from the mesosphere but it has more NOx, a catalyst for the destruction of ozone. This produces a severe contrast in ozone partial pressure and air density across the vortex, generates intense polar cyclone activity and drives surface pressure at 60-70° south to its annual minimum when the hole is fully established.

the ozone hole
Fig 8 Source of data here

Fig. 8 shows NOx at 50 hPa . By 15th October 2015 NOx has destroyed all ozone between 100 hPa and 50 hPa as we see at left in Fig 9 below in terms of the distribution of ozone. The light blue line defines the position of the vortex at 50 hPa.

12th Oct
Fig 9 Source of data at left and right 

In  Fig 9,  above at right, the dotted black line represents  ozone prior to the establishment of the hole while the purple line shows the temperature profile at that time. The red line shows that temperature increases as the hole establishes in stark contrast with the narrative of those who promote the story that man is responsible for the hole, a natural feature of the polar atmosphere in spring. Big Green prefers ‘unnatural’ and it would muddy the narrative if they had to admit that the hole is a natural consequence of atmospheric dynamics.

The contrast between cold air devoid of ozone and warm air from the mid latitudes that is rich in ozone at 60° south seen in figure 9 at left drives intense polar cyclone activity giving rise to a springtime minimum in surface atmospheric pressure as seen in figure 10. It was there in 1948 but more so in November. As surface pressure has fallen and ozone partial pressure has increased the minimum is a month earlier.

SLP 60-70°S
Fig. 10 Source of data here.

The winter maximum in surface pressure seen in Fig 10 now occurs earlier than it did in 1948.

Below we see that the climate shift of 1976-8 shows up in the comparison between sea surface temperature and the temperature of the air 200 hPa (where ozone warms the air) at 25-35° south latitude. This represents enhanced ozone propagating across the latitude bands at the time of the 1976-8 climate shift, a shift that simultaneously intensified the Aleutian low in the North Pacific, the dominant low pressure, ozone rich area in the northern hemisphere with knock on effects across the Pacific and North America.

Fig 10 Source of data here

The increase in the temperature at 200 hPa produces an increase in geopotential height. There is a well established relationship between GPH and surface temperature as acknowledged and demonstrated in the paragraph below from the US National Oceanic and Atmospheric Administration under the heading ‘Temperatures’. What a title!

NOAA statement

In this way the ozone content of the atmosphere is linked to the synoptic situation, the generation of the jet stream, upper level troughs and polar cyclones. Polar cyclones are the most vigorous and influential elements in the circulation of the atmosphere and the prime determinant of the rate of energy transfer from torrid equatorial to frigid high latitudes because they determine the pressure gradient between the equator and the pole. The warm moist westerly winds emanating from tropical rain forests pass by the high pressure systems of the mid altitudes and drive pole-wards warming the surface and giving rise to precipitation in ‘fronts’.

If the jet stream loops towards the equator cold dry polar winds sweeps equator-wards bringing near freezing conditions to mid and even low latitudes. Orange Orchards in subtropical Florida can be frosted. Cold Antarctic Air has been known to sweep northwards into Brazil. If polar atmospheric pressure increases the mid latitudes cool due to this influence and also due to increased cloud cover under high pressure systems as geopotential heights fall away with the ozone content of the air.

The progressive loss of atmospheric mass in high southern latitudes over the last seventy years has added mass to the mid altitudes and enhanced the westerly wind flow while opening up the sky to admit more solar radiation thereby warming the oceans. The result has been a marked warming of the air in high southern latitudes centred on those months where this natural variability occurs, primarily between Jun and the ozone hole months of the Antarctic springtime. See Fig 11 below.

A peculiarity  in the Antarctic record is the cooling experienced in summer over the last seventy years. The Arctic forces atmospheric mass into  high southern latitudes as it becomes ozone-active in the months November through to February keeping the westerlies at bay in the summer season giving rise to cooling in high southern latitudes.

Fig 11 Source of data here


SLP Antarctica
Fi 12 source of pressure data here

Sunspot numbers: Source: WDC-SILSO, Royal Observatory of Belgium, Brussels


The decline of surface pressure at 80-90° south latitude is punctuated with oscillations between regimes of relatively high surface pressure that are on average about 3.5 years apart with twenty such occurrences in the last sixty nine years and an equivalent number of periods of low surface pressure. The amplitude of the swings varies little within a solar cycle but secular change seems to occur between solar cycles. Change points seem to be associated with solar minimum.

If we now superimpose the data for surface pressure  in the high Arctic we have Fig. 13:

Polar SLP
Fig 13


  • Over time we see a shift of atmospheric mass from the poles and a gain of mass in the region of the East Asian High pressure zone. In fact atmospheric mass is likely to accrue everywhere except in high latitudes above 50° where polar cyclones, energised by increase in the partial pressure of ozone force pressure reductions. This process has fundamentally changed the parameters of the climate system. Changed, not ‘warped’ because warping suggests something unnatural and change is a natural and ongoing process. The change in 1976-8 involved a marked drop in Antarctic surface pressure that forced an increase in Arctic surface pressure regardless of the increase in global ozone at that time. The change in surface pressure has been continuous and  frequently abrupt and in particular either side of the relatively spotless cycle 20. There is a change of slope between 21 and 22 that is common to both hemispheres.
  • The evolution of surface pressure is characteristically different in different solar cycles
  • In solar cycle 18 Antarctic atmospheric pressure is superior to that in the Arctic. This superiority disappears in solar cycle 19, the strongest of recent times.
  • The very strong solar cycle 19 saw a steep fall in atmospheric pressure over Antarctica and also over East Asia but a compensating increase in pressure in the Arctic.
  •  The weak solar cycle 20 that nevertheless exhibited strong solar wind activity, saw a fall in atmospheric pressure at the poles that proceeded ‘hand in hand’  and a strong compensatory increase in surface pressure over the Eurasian continent.
  • The climate shift of 1976-8 involved a departure from the norm of the previous solar cycle 19 in that extreme falls in atmospheric pressure over Antarctica produced short term mirror image increases in Arctic surface pressure. Antarctic pressure still declined at much the same rate as it had over cycle 20 prior to the climate shift of 1976-8 .
  • Cycle 22 sees a recovery in Antarctic pressure and a compensatory collapse in Arctic pressure now establishing at the lowest level seen in the entire 69 year period bringing on the period of strong  advance  in Arctic temperature and loss of sea ice.
  • The onset of further declines in Antarctic pressure in cycle 23 allowed a recovery in Arctic pressure that, despite stepping to a higher level at the start of the cycle, declined over the period. Mirror image effects are again apparent.
  • Cycle 24 brings a brief recovery in Antarctic pressure at the expense of the Arctic where the peaks decline quickly as successive minimums in Antarctic  pressure (except the last) are higher than the previous minimum.
  •  After solar maximum in cycle 24 the decline in surface pressure in Antarctica is spectacular involving  greatly enhanced polar cyclone activity  perhaps due to enhanced ozone production due to  increased  cosmic ray activity as solar cycle 24  enters the decline phase. Reduced sunspot and flare activity  is responsible for a very compact atmosphere that may react more vigorously to the solar wind.
  • The peak in Eurasian surface pressure occurred about 1998 and a slow decline appears to have set in.

Generalising we can say that surface pressure and surface temperature appears to be linked to solar activity but in a fashion that is completely different to the narrative that insists that ‘total solar irradiance’ is the the only factor of importance. Rather, the driver of natural change in climate  works by changing the planetary winds and cloud cover via polar atmospheric dynamics that are closely linked to the flux in the ozone content of the air. Since 1978 the swings in surface pressure in Antarctica have been vigorous suggesting that a more compact atmosphere reacts more strongly to change in the solar wind and that cosmic rays that are enhanced in a regime of low solar activity may be more influential in ionising the polar atmosphere allowing the generation of ozone and especially so  during periods where the intake of mesospheric air is disrupted and the polar stratosphere warms. It is apparent that the ozone content of the air in high latitudes peaks in late winter/spring  even though the lifetime of ozone in the atmosphere is progressively shortened due to the increase in the incidence of destructive UVB radiation as the sun rises higher in the sky and the earths orbit takes it closer to the sun. Something has to account for that extra ozone. Climate science does not even pose the question, let alone answer it.

The ‘canary in the coalmine’ that indicates the change in the forces at work can be seen in extreme surface temperature variability in February and July. These months exhibit the greatest differences in terms of the whole of period  minimum and whole of period maximum in surface pressure as seen below. It is the months of January and July that exhibit the greatest variability in surface temperature. We see that in the sphere of natural climate change, surface pressure and surface temperature are inextricably linked. But, then again we always knew that by looking at the weather from week to week.

SLP varn Antarctica
Fig 14

The evolution of Antarctic surface pressure by the month is explored in the third diagram in this chapter. It appears that the system is at a turning point. Eight of the twelve months of the year, including the critical months under the control of the Antarctic and later the Arctic, from August through to February  show signs of a rise in surface atmospheric pressure. If this continues and the  ozone content of the global atmosphere continues to fall, and with it the temperature of the upper stratosphere we might sometime witness a reversal of the climate shift of 1976-8.

TEST QUESTIONS related to Fig.15: Have you understood this chapter?

Why is it that the Antarctic stratosphere above 150 hPa warms faster than the  atmosphere below 150 hPa in spring?

Why do we see the abrupt change in slope in the temperature of the air above 70 hPa in November?

Why does temperature between the surface  and 400 hPa decline at an invariable rate between April and August while the atmosphere above becomes increasingly colder?

What is the temperature at the tropopause in August and at what elevation is it located?

Fig. 15


POSTSCRIPT:   For the convenience of the reader I list the chapters in this treatise in order to provide an idea of the scope of the work and the manner of its development. At the end is a list of chapters currently in preparation.


How the Earth warms and cools in the short term….200 years or so…the De Vries cycle

Links to chapters 1-38

  1. HOW DO WE KNOW THINGS Surface temperature is intimately tied to the global circulation of the air and the distribution of cloud.Ozone is inextricably linked to surface pressure and cloud. The key to unlocking the cause of climate change lies in observation.
  2. ASSESSING CLIMATE CHANGE IN YOUR OWN HABITAT On accessing and manipulating data to trace the way climate changes regionally. It is essential to understand the manner in which the globe warms and cools if one is to correctly diagnose the cause.
  3. HOW THE EARTH WARMS AND COOLS NATURALLY It is observed that the surface warms when geopotential height increases. This chapter answers the question why geopotential height increases.
  4. THE GEOGRAPHY OF THE STRATOSPHERE  Answers the question ‘at what elevation does the incidence of ozone cut in as a means for heating the atmosphere thereby creating what has been erroneously described the ‘stratosphere’. In winter its anything but stratified. It should be renamed ‘The Startosphere’.
  5. THE ENIGMA OF THE COLD CORE POLAR CYCLONE High latitude cyclones are the most vigorous circulations on the planet. At the surface they have a cold core. Their warm core is in the upper troposphere where the ozone impinges. No cyclone can form without a warm core.
  6. THE POVERTY OF CLIMATOLOGY Geopotential height at 200 and 500 hPa vary together in the extra-tropical latitudes. Furthermore, the increase in geopotential height that accompanies the surface pressure change is accompanied by a loss of cloud cover. All ultimately relate to the changing flux of ozone in the upper half of the atmospheric column in high latitudes.
  7. SURFACE TEMPERATURE EVOLVES DIFFERENTLY ACCORDING TO LATITUDE Surface temperature change is a two way process that occurs at particular times of the year.
  8. VOLATILITY IN TEMPERATURE. Temperature change is a winter phenomenon, increasing in amplitude towards the poles
  9. MANKIND IN A CLOUD OF CONFUSION Our understanding of the atmosphere is primitive.
  10. MANKIND ENCOUNTERS THE STRATOSPHERE. The origin of the stratosphere was a mystery back in 1890 and we still haven’t got it right.
  11. POPULATION, SCARCITY AND THE ORGANISATION OF SOCIETY. A dispassionate view of the Earth, considering its ability to promote plant life, sees the planet as distinctly cooler than is desirable.
  12. VARIATION IN ENERGY INPUT DUE TO CLOUD COVER. The atmosphere mediates the flow of solar energy to the surface of the planet via change in cloud cover. How could this be overlooked?
  13. THE PROCESSES BEHIND FLUX IN CLOUD COVER. A discussion of some of the intricacies involved in the relationship between surface pressure, cloud cover and the uptake of energy by the Earth system.
  14. ORGANIC CLIMATE CHANGE A discussion of the big picture that focuses on the natural sources of climate change.
  15. SCIENCE VERSUS PROPAGANDA The scare campaign about ‘global warming’ or ‘climate change’ is not based on science. Science demands observation and logic.  There is a ‘disconnect’ between observed change and the hypothesis put forward to explain it. One cannot ‘do science’ in the absence of accurate observation. What is being promoted as ‘Climate Science’ by the UNIPCC fails at the most basic level.
  16. ON BEING RELEVANT AND LOGICAL Climate scientists freely admit they do not know what lies behind surface temperature change that is natural in origin that expresses itself regionally and with large differences according to latitude i.e. the annular modes (Arctic and Antarctic Oscillations). In that circumstance it is nonsense to attribute change to the influence of man. There is an error in logic. But, its wilful.
  17. WHY IS THE STRATOSPHERE WARM Is the warmth of the stratosphere due to the interception of ultraviolet radiation or heating due to the interception of long wave radiation from the Earth? This issue is fundamental. Observation provides the answer.
  18. THE OZONE PULSE, SURFACE PRESSURE AND WIND The direction and intensity of the wind and the distribution of ozone is closely related. This chapter gives an introduction to the nature and origin of the annular modes phenomenon.
  19. SHIFT IN ATMOSPHERIC MASS AS A RESULT OF POLAR CYCLONE ACTIVITY The distribution of ozone maps surface pressure. When the partial pressure of ozone builds pressure falls locally and is enhanced elsewhere.
  20. THE DISTRIBUTION OF ATMOSPHERIC MASS CHANGES IN A SYSTEMATIC FASHION OVER TIME Surface pressure changes on long time schedules. UNIPCC climate science is oblivious to these changes and the consequences attached to the change.
  21. THE WEATHER SPHERE-POWERING THE WINDS. The strongest winds can be found at the overlapping interface of the troposphere and the stratosphere and we haven’t yet worked out why or what it means when change occurs at that interface.
  22. ANTARCTICA: THE CIRCULATION OF THE AIR IN AUGUST An introduction to the structure and dynamics of the atmosphere in high latitudes
  23. THE DEARLY BELOVED ANTARCTIC OZONE HOLE, A FUNCTION OF ATMOSPHERIC DYNAMICS. The celebrated ‘hole’ is actually a natural feature of the Antarctic atmosphere in spring and has always been so. It’s dictated by geography and process during the final warming.
  24. SPRINGTIME IN THE STRATOSPHERE More detail on the natural processes responsible for the ozone hole.
  25. WHERE IS OZONE? PART 1 IONISATION. The structure of the upper atmosphere is dictated by process. Hand waving is no substitute for observation.
  26. WHERE IS OZONE PART 2 EROSION More on the processes responsible for the structure of the atmosphere in high latitudes and in particular the manner in which tongues of air of tropical origin are drawn into the polar circulation.
  27. COSMIC RAYS, OZONE AND THE GEOPOTENTIAL HEIGHT RESPONSE Observation and logic suggest that both the solar wind and cosmic rays are independently influential in determining the partial pressure of ozone in high latitudes. No other possibility is remotely plausible.
  28. MISREPRESENTING THE TRUTH Ozone, not UV radiation warms the upper air in winter
  29. THE PURPOSE OF SCIENTISTS History is re-interpreted continuously to suit the purposes of elites. Science is moulded in that same way by virtue of the fact that the elites hold the purse strings. All is ‘spin’.
  30. THE CLIMATE SHIFT OF 1976-1980. The nitty gritty of how climate changes together with the basics of a theory that can explain the natural modes of variation. Observation and theory brought together in a manner that stands the test of common sense.
  31. DIFFERENCES BETWEEN THE HEMISPHERES: THE ORIGIN OF STRATOSPHERIC WARMINGS. Unfortunately climate science has a lot to learn. It has to begin with observation rather than mathematical abstractions. In fact, it’s best to keep the mathematicians at arms length.
  32. THE CLIMATE ENGINE THAT IS THE OZONOSPHERE . The atmosphere re-defined to take account of the critical processes that determine its movements and thereby the equator to pole temperature gradient. Takes a close look at processes inside and outside the winter time polar vortex. The system is the product of the distribution of ozone.
  33. SURFACE PRESSURE AND SUNSPOT CYCLES .  This chapter looks at the evolution of surface pressure and how it relates to solar activity. It explores the nature of the interaction between the atmosphere at the northern and southern poles.
  34. WEATHER ORIGINATES IN THE OZONOSPHERE Takes the focus to a regional and local perspective to answer the question as to why the mid latitudes of the southern hemisphere have been colder in winter of 2016.
  35. JET STREAMS Compares and contrasts two quite different explanations for the strong winds that manifest where the troposphere and the stratosphere overlap.
  36. JET STREAMS AND CLIMATE CHANGE Looks at some great work that measures the ozone content of the air across the northern hemisphere and sets up a classification in a novel fashion, by zone of commonality rather than latitude. Relates the distribution of ozone to the occurrence of the subtropical and polar jet streams.  Zones of surprisingly uniform ozone content lie between the jets, and both pole-wards and equator-wards of the jets. Tropopause height steps down at the latitude of the jets creating marked contrasts in atmospheric density. This is a very useful and rock solid survey of great importance given the relationship between ozone and surface pressure.
  37. THE HISTORY OF THE ATMOSPHERE IN TERMS OF UPPER AIR TEMPERATURE An examination of temperature dynamics at the 10 hPa pressure surface over the poles.Critical to understanding the evolution of climate over the period of record.
  38. E.N.S.O. RE-INTERPRETED. The origin of the El Nino Southern Oscillation phenomenon and why the matter is of little consequence.


Here is how would I explain the Earth’s natural modes of climate change to a child!

Let us consider the Earth as a car. We are at some latitude (like being in the back or the front seat of a car). Let’s imagine we have the heater in the front of the car and a vent over the back seat. You can open and close the vent and turn it to the front to scoop in air or to the back and suck air out of the car. So, the cold air from the vent can blow straight down the back of your neck or you can turn the vent around so that it sucks air out of the car so that the warm air from the engine travels to the back of the car.

Ozone heats the air in winter creating polar cyclones that lower surface pressure at the pole attracting a flow of air from the equator. More ozone = lower surface pressure in high latitudes = wind blows more often from the equator. Less ozone= higher surface pressure at the pole= wind from equator does not come. Instead, a cold wind comes from the pole similar to what would happen if you turned the vent in the car roof so it faced forwards.

The second way in which ozone changes surface temperature is by changing cloud cover. Because ozone is mainly present in the upper air and it ascends strongly at the poles in winter it has to come down somewhere else. Where it  descends it warms the air and evaporates cloud letting the sun shine through to be absorbed by the ocean that acts like a battery because it stores energy.  Full dense cloud  curtails solar radiation by as much as 90%.

The climate varies by warming and cooling  in winter. It is in winter that we see the big changes in 1. Polar surface pressure, 2. The ozone content of the air 3. The direction of the wind and hence  the temperature at the surface.

Change can be two way, both warming and cooling.

Ozone is inextricably linked to surface pressure. The key to unlocking the cause of climate change lies in working out what can change the ozone content of the air near the poles in winter.



Ninety nine percent of the atmosphere lies within the ambit of a vigorous day’s walk, just 30 kilometres!

The atmosphere efficiently conveys heat to space via convection (transport) and radiation.  This is apparent in the 24 hour cycle of temperature as a point on the Earth’s surface alternately faces the sun and enters the night zone and the more so in inland locations where the daily range of temperature is accordingly much greater.We call this increase in the daily range of temperature the ‘continental’ effect.

In the northern hemisphere where there is a relative abundance of land the seasonal extremes are wider we have another example of the ‘continental effect’. The strong maximum in outgoing radiation in summer should promote summer warming if the atmosphere were subject to a ‘greenhouse effect’. But, consult the graph below and see that in the mid latitudes of the northern hemisphere we find that the temperature has increased mainly in spring and autumn. In high latitudes the increase in temperature has been in winter when outgoing radiation plunges to a  minimum.

Change in T in NH according to month of the year

Under an imaginary greenhouse regime the atmosphere becomes an impediment to heat transfer and we should see an increase in temperature in all seasons and in all locations just as the ocean limits the variation in temperature of proximate locations. But in fact we observe that the temperature increase that has occurred is variable according to the month of the year. This temperature increase does not tally with the mechanism that is proposed by the United Nations International Panel on Climate Change that was set up to examines man’s influence on the climate of the globe.

In cold conditions humans make sure that the air close to their skin is contained and unable to move. But, the Earth’s atmosphere is not confined in this way. Consequently it acts as a river for energy transfer from the surface to space. As a river it is perhaps the most vigorous on the planet. The ‘supposed greenhouse effect’ is no impediment to this process. Common sense dictates that a static atmosphere is required if the rate of loss of energy is to be curtailed and back radiation is to return energy to the surface via a so-called greenhouse effect. The atmosphere is anything but static. We insulate to stop the air moving. The atmosphere is air.

Plainly we must look to other modes of causation to explain the temperature increase that has been observed.


The following observations demonstrate the primacy of cloud that acts to reflect solar radiation, so determining surface temperature:

  1.   For the globe as a whole the sea is always warmer than the land and the global average for both the land and the sea is greatest in July.Global sea and air
  2.  A maximum in June/July is an anachronism. Earth is farthest from the Sun on July 4. The quotient of energy available from the sun (above cloud level) is 6% less in July than in January.

Why is the Earth warmest when it is most distant from the sun?

In northern summer the sun heats the abundant land masses and the land being opaque the surface quickly warms and with it the atmosphere.  The supply of water vapour to the atmosphere lags behind the increase in the water holding capacity of the air. There is less ocean in the northern hemisphere. In any case water is transparent and it stores energy to depth releasing it slowly. The upshot is that the heating of the atmosphere by the land rich northern hemisphere directly and dramatically reduces cloud cover.  The July maximum in global temperature is due to an increase in the diminished total of solar energy that is available in July. The amount made available at the surface is so much greater in mid year as to result in a temperature peak in mid year.

In northern autumn gathering cloud reflects more solar radiation and the globe therefore cools as its orbit takes it closer to the sun. That’s a pity because as I explained in the last post the globe as a whole is cooler than is desirable from a plant productivity point of view and all life ultimately depends on plants.


From:http://www.iac.es/adjuntos/cups/CUps2015-1.pdf we have direct measurements for Izana observatory in the Canary Islands of  the number of days where cloudiness (red and yellow) is recorded and conversely the number of days where the sky is sufficiently devoid of clouds to achieve a clear sky rating (green).  The attenuation of cloud cover in northern summer is evident.
Cloud cover Teide Observatory, Spain


From http://www.ccfg.org.uk/conferences/downloads/P_Burgess.pdf we have direct measurements of solar radiation at the surface.

Radiation as a function of time of year and cloud cover in Bedordshire

At this site in the UK cloud is responsible for the attenuation of solar radiation by a minimum of 26%  and a maximum of 90%.


Surface temperature is directly modulated by cloud cover as demonstrated in the following satellite photograph.Temp varies with cloud cover



It should be abundantly clear that it is the mediation of energy input by clouds that is the most influential determinant of surface temperature. Zones that experience high surface pressure are relatively cloud free. The essence of change in the ‘annular modes’ lies in a shift of mass from high latitudes due to ozone heating that drives down surface pressure. High southern latitudes have lost atmospheric mass for seventy years on the run. Lost mass has been distributed across the globe adding to surface pressure in those parts of the globe where increased surface pressure  is allied with relatively cloud free skies. In chapter 3 we observed that the globe warms when geopotential height increases. Geopotential height increases when surface pressure increases as the core of a high pressure cells entrains ozone from the stratosphere.


Cloud comes in all shapes, types, sizes altitudes and density and is notoriously difficult to measure.

At http://www.atmos.washington.edu/~sgw/PAPERS/2007_Land_Cloud_JClim.pdf  we have a paper documenting change in cloud cover and establishing correlations between cloud cover over Europe and the North Atlantic Oscillation, a local manifestation of the the northern annular mode.

Survey of cloud cover change


Note that in the mid latitudes in winter, cloudiness is associated with incursions of warm, moist air from the tropics promoting a positive correlation between the presence of clouds and surface temperature. The band of cloudiness formed by frontal activity occurs in the interaction zone between cold dry air of polar origin and warm air of tropical origin. People  might observe that ‘its too cold to rain’ when the air is coming from high latitudes. Alternatively they might say, they can ‘smell’ the rain coming when the air is humid and it comes from lower latitudes. Or they might say, ‘the temperature will increase when it starts to rain’.

To suggest that the positive correlation between cloud cover and temperature in winter is due to back radiation from clouds or that there is a positive causal relationship between the presence of cloud and surface temperature due to back radiation involves an error in logic. Its warmer in winter when there is cloud about  because the cloud arrives with a warmer, moister body of air that originates in tropical latitudes.  Cloud does not cause warming in winter and an opposite effect in summer. Cloud always involves an attenuation of solar radiation.


There should be no confusion as to the effect of cloud on surface temperature. To suggest that the climate is warming due to back radiation indicates a lack of appreciation of the reality of the way in which the atmosphere mediates the flow of solar energy to the surface of the planet and a lack of appreciation of the manner in which the atmosphere actively cools the surface.

To suggest that back radiation is causing warming without first ascertaining that cloud cover has not fallen away indicates an appalling lack of common sense and responsibility.  This brand of ‘science’ is unworthy of the name.

Many sceptics of the AGW argument wrestle with the notion that there is some sense in the idea of ‘back radiation’ from clouds and a CO2 rich atmosphere and try and assess whether the ‘feedbacks’ built into IPCC climate models are an exaggeration of reality. Most unfortunately this belief in cloud radiation feedback and the primacy of a ‘back radiation effect’ has given the ‘anthropogenic’ argument legitimacy.

Back radiation is no defence against a wind chill effect! You wear clothes to combat conduction and convection. To think otherwise is to be muddle headed.

The manner in which the Earth warms and cools indicates that there is another mechanism at work. This other mechanism has primacy and a study of the manner in which the globe has warmed and cooled suggests that it is also a sufficient explanation of the change that has occurred. It is a two way process, capable of warming and cooling as we observe on an inter-annual basis. The mechanism that is responsible for inter-annual variations is also responsible for the decadal and longer trends. When you understand the mechanism you will see that cooling has already begun and more cooling is the immediate prospect.

If you can not explain the inter-annual variations you fail climate 101. UNIPPC, you fail climate 101.


10 Mankind encounters the stratosphere

Here I present the opening page of a paper presented to the Royal Society of London in 1908 by Mr E Gold relating to an ‘isothermal layer’ in the atmosphere. ‘Iso’ means equal. At a certain elevation the temperature of the air ceases to decline with altitude and appears to stabilize. This was a great surprise and a challenge to understand and explain. The challenge is still there, more than 100 years later. The science is by no means settled.

Isothermal layer

Teisserenc de Bort was chief meteorologist for the Central Meteorological Bureau in Paris from 1892 until 1896, when he opened his own meteorological observatory at Trappes, near Versailles.

de Bort discovered a difference in the temperature profile between high pressure cells and low pressure cells. The height at which temperature no longer falls was observed to be 12.5km in high pressure cells and only 10 kilometres in low pressure cells.

The question is: Why Is it so?

Gordon Dobson, working in the late 1920s observed that total column ozone is enhanced in low pressure cells and reduced in high pressure cells. Near the surface the air in low pressure cells is colder and denser than high pressure cells because low pressure cells originate in higher latitudes. The expectation is that the air in low pressure cells would be denser throughout the atmospheric column and that there would be more molecules in the atmospheric column, not less. That there are less molecules (lower surface pressure) is due to an anomalous reduction in density aloft due to ozone heating.

This state of affairs is reflected in the temperature of the atmospheric column at 30-40° south seen below:


Notice that the lapse rate is lower and the cold point is warmer in winter when ozone partial pressure increases and low pressure cells are found closer to the equator. From this figure we see that the lapse rate (decline of temperature with altitude) is reduced by ozone above the 300 hPa pressure level (8 kilometres).  The enhanced presence of ozone above and below the point of reversal at 100 hPa is responsible for a warmer ‘tropopause’ than in lower latitudes.  The temperature at the point of reversal is -70° C at 30-40° south latitude whereas it is commonly -85°C above the equator. The warmer ‘tropopause’ is found at a lower elevation than at the equator. It is also found at a lower elevation in cells of low surface pressure than in cells of high surface pressure as observed by de Bort. Cells of high surface pressure originate in lower latitudes where there is less ozone to warm the atmospheric column aloft.

At 50-60° south the ‘cold point’ or ‘point of reversal’ is still warmer as seen below. But its temperature and elevation varies according to the time of the year.  Here, the presence of very cold air from the mesosphere tends to lower temperature in winter against the influence of increasing ozone partial pressure.50-60S

As latitude increases the temperature profile of the atmospheric column is increasingly affected by the presence of ozone at ever lower altitudes. The cold point is not a point of demarcation between ozone affected air and air that is free from ozone.  One might say that the stratosphere is invading and taking over the troposphere. But, more accurately, one would say that the nature of the atmospheric column is changing so as to render the terms ‘troposphere’, ‘stratosphere’ and ‘tropopause’ less and less meaningful. The cold point ascends into the stratosphere as the point at which ozone is present in the atmospheric column descends towards the surface. It is no longer appropriate to refer to the atmosphere below the cold point as the ‘troposphere’. Because its temperature profile is affected by ozone it is as much stratosphere as troposphere.

In truth, as we approach the poles the terms, ‘troposphere’, ‘stratosphere’ and ‘tropopause’ become a source of confusion.  For instance, at 50-60° of latitude we can observe that the  cold point is located in the upper margins of the ozonosphere (defined as a zone containing ozone that influences the lapse rate of temperature with elevation). In winter the cold point establishes at 10 hPa where the greatest heating due to ozone is experienced.  In conventional parlance the stratosphere, considered as that part of the atmosphere below the cold point, would simply have disappeared and the entire column up to 30 hPa would be called ‘troposphere’.

In fact, the term ‘stratosphere’, implying that the air is stratified into different layers with the temperature aloft greater than the temperature below, is  misleading. It is the presence of ozone that is responsible for the formation of the most extensive areas of uplift that extend throughout the entire atmospheric column. This is the enigma of the cold core polar cyclone, cold and dense at the surface, warm and much less dense over a much broader area aloft with ‘aloft’ implying continuation into the stratosphere. It is the stratospheric component that accounts for the lower surface pressure. Does that reality square with the notion of ‘stratified?


For the purpose of understanding weather and climate we should forget about ‘troposphere’ and ‘stratosphere’.  It is more productive to make distinctions between parcels of air that have relatively consistent but quite different characteristics and respect that the parcel has a tropospheric component and a stratospheric component. These parcels pay no respect to the notion of a ‘tropopause’ because it is their characteristics in the ozonosphere that differentiates them.

The description of the atmosphere might then go something like this:


The low density and warmth aloft in a low pressure cells is unrelated to surface conditions. It is due to ozone. Reduced atmospheric density due to the presence of ozone initiates uplift.  Uplift aloft promotes uplift below. Uplift below together with the intake of moist air of tropical origin results in cloud and precipitation.  Cloud reflects solar radiation keeping the surface cool. Cloud absorbs long wave radiation from the surface promoting a warmer atmospheric column. Precipitation results in the release of latent heat warming the atmospheric column and reducing its density. Low pressure cells carry cold air into warmer latitudes maintaining the temperature differential at the surface. Accordingly, by virtue of the ozone in the air aloft, the heat engendered below, the heat gained from long wave radiation by both atmospheric moisture and ozone and the movement towards lower latitudes the pressure differential between cells of low surface pressure and the surrounding atmosphere tends to be maintained. But the process results in the erosion of ozone aloft due to the solubility of ozone in water. Low pressure cells are a watery environment, not within their core but on their wide margins where moist tropical air is drawn into the circulation. For this reason, the life of a low pressure cell is limited. Nothing like this phenomenon is generated in mid or low latitudes. Tropical cyclones have a narrow core that peters out aloft. Polar cyclones have a wide dry cold core below and broaden aloft into an even wider dry core that is plainly located in the region that we have been accustomed to call the stratosphere. In fact its ozone that gives these ascending columns of air their life force.


High pressure cells are formed at lower latitude where the surface air is warmer. The consequent reduction of air density in the near surface air means that the 500 hPa pressure level is located at a higher elevation than in low pressure cells. Aloft, the relative deficit in ozone gives rise to enhanced air density.  This enhanced density aloft is responsible for the greater weight of the atmospheric column in a high pressure cell as measured at the surface.  Settlement occurs in the winter hemisphere associated with cold landmasses and cold water and over relatively cold waters on the western sides of the continents in the summer hemisphere.  Contact with a cold surface cools the air enhancing density and assists the process of descent. Descending air is dry, warming due to compression and relatively cloud free, especially in the core, less so on the margins. As pressure increases in a high pressure cell one would expect geopotential height to fall due to increased density in the lower part of the column. However, it is observed that geopotential height increases and the increase in geopotential height, increases with elevation. This is due to the downwards descent of ozone, making the column warmer and reducing the incidence of cloud.


The difference between the two air masses establishes a horizontal density gradient that is steepest above 500 hPa. The steepness of the density gradient is associated with rapid circular motion and the elevation of low density air. This convective process manifests as a jet stream that circulates around the globe rather than around the periphery of low pressure cells. One arm tends to be located where high latitude ozone rich air meets ozone deficient air from lower latitudes. Another arm of the jet stream manifests at the polar vortex where there is a steep gradient in ozone and air density between ozone rich air on the periphery and ozone deficient air from the mesosphere within the core. Nowhere is this jet stream continuous. It is a porous medium allowing mesospheric air to escape into the wider atmosphere. In summer when surface pressure is lower at the pole and ozone partial pressure falls away in high latitudes mesospheric air no longer descends into the upper atmosphere and the entire polar region is relatively ozone rich. The absence of mesospheric air in the circulation is associated with a reversal of the flow at 10 hPa. The near polar arm of the jet stream disappears as surface pressure falls away and cold air of mesospheric origin withdraws.


The warmth that initiates the ascending circulation in low pressure cells is not at the surface. It is in the upper half of the atmosphere. This is due to the increase in the ozone content of the air in high latitudes due to reduced photolysis of ozone at low sun angles, especially in winter. In today’s climatology (as in IPCC reports), the reason given for enhanced ozone in higher latitudes and the Arctic in particular is ‘the Brewer Dobson circulation’ involving the descent of ozone from aloft in high latitudes. But this transport phenomenon can not explain concentration enhancement. A body of air with a given constitution can not change its constitution simply by moving to another place. Concentration enhancement is made possible by reduced photolysis as the sun sinks towards the horizon and the wave lengths that photolyze ozone are progressively screened out. This enhancement of ozone partial pressure does not explain the higher concentration of ozone in both summer and winter in the northern hemisphere. That is due to the relatively reduced intake of mesospheric air over the Arctic by comparison with the Antarctic. There is an alternative area of descent in the northern hemisphere called the Siberian High and another over the Greenland Hudson’s bay area but nowhere does surface pressure approach that seen over the Antarctic ice mound in winter. The difference in the ozone content of the two hemispheres is reflected in an enhanced erythermal UV index in the southern hemisphere, especially in summer.

In conventional climate science the atmosphere is driven by heating of the surface at the equator. In the climate science that takes account of ozone phenomena ozone is observed to be the single greatest source of atmospheric heating and it is most pronounced in the winter hemisphere. It gives rise to a zone of uplift over the oceans at roughly 60-70° of latitude in both hemispheres.

Conventional climate science has no plausible explanation for the existence of a ‘cold core’ polar cyclone’ and it struggles to provide a plausible reason for the jet streams.

Conventional climate science has no explanation for the planetary low in surface atmospheric pressure at 60-70° south latitude that has intensified over the period of record.

A low pressure circulation that engages the totality of the atmospheric column including what is confusingly described as ‘troposphere’ and  ‘stratosphere’ (low pressure cells at between 30° and 60° of latitude) must be balanced by a matching descent of stratospheric air into the ‘troposphere’. What goes up must come down. That is accommodated in zones of high surface pressure where air descends.  High pressure cells form at lower latitudes where the circumference of the Earth is greater. High pressure cells are accordingly very extensive requiring a relatively slow rate of descent over a very broad area. The ozone descending from the stratosphere is shared over this broad area and much diluted in concentration in the process. The presence of ozone in high pressure cells, while it warms the air and raises geopotential height as the ozone concentration of the air anomalously increases, is insufficient to counter the tendency of the air to settle. As the air is warmed clouds disappear allowing more radiation to reach the surface, the prime source of surface temperature variations on all time scales. This is the subject of chapter 3 https://reality348.wordpress.com/2015/12/29/3-how-the-earth-warms-and-cools-naturally/


Descent also tends to occur at the pole where surface pressure increases in winter due primarily to a shift in mass from the summer hemisphere. The velocity of descent at the pole is no greater than in the upper atmosphere in the mid latitudes, in fact it is possibly less. It may be enhanced according to the vorticity of the circulation driven by ozone outside the margins of the polar cap and also as surface pressure episodically increases. It is retarded when surface pressure falls as naturally occurs in summer.  Research suggests that there is an overriding geomagnetic effect via the behaviour of charged particles in a magnetic field. The polar atmosphere has a low plasmapause and is much subject to ionization by cosmic rays. These factors will tend to facilitate a geomagnetic effect.

There has to be a countervailing force. Ozone, left to its own devices, would keep on lowering surface pressure that has the effect of excluding mesospheric air and allowing the partial pressure of ozone to build up. In any event the advent of summer puts an end to the process. The ozone content of the air is inhibited in summer by increased photolysis. Surface pressure falls as the atmosphere warms and becomes less dense. The winter hemisphere cools and draws in atmospheric mass.  It is in the alternate winter hemisphere that the process begins afresh. This is the reason why surface temperature is seen to increase in winter rather than summer. It is also the reason for the much enhanced volatility of surface temperature in January-February and July August. It is the reason why all points north of 30° south experience greatest volatility in January and February and all points south of 30° south experience greatest volatility of temperature in July and August. Why the split at 30° south. Its because of the ozone supercharged nature of the Arctic atmosphere as against the ozone impoverished nature of the southern hemisphere gives the former greater reach.


It is observed (in IPPC climate science) that an increase in the temperature (or geopotential height) of the ozonosphere in high latitudes (50° through to 90° of latitude) is associated with a loss of atmospheric mass (reduced surface pressure) in high latitudes and a gain in mass (surface pressure increase) in the mid latitudes and elsewhere. What is not observed in IPCC climate science is that this shift in atmospheric mass can be extended to decadal and longer time scales. There is a cycle of change in atmospheric pressure in high southern latitudes that is longer than the seventy years of reanalysis data. This change in surface pressure alters the planetary winds on a relatively enduring basis. The failure of IPCC climate science to realize the cause of this atmospheric shift or to associate it with the manner in which the globe warms and cools over long time periods represents a failure to observe, analyse and reason. This represents a failure to come to grips with the origin of climate change that is natural in origin and the disaster of false attribution.


It can be observed that in the mid and equatorial latitudes, surface temperature increases directly with atmospheric pressure. As described above this phenomenon relates to the change in cloud cover. Surface pressure rises in the mid latitudes as it falls in high latitudes. This is the primary dynamic behind weather and climate change on all time scales.

It is plain that the evolution of the planetary winds and temperature at the surface of the Earth is intimately associated with this flux in surface pressure wrought by ozone heating in high latitudes.

Mr Gold made the following statement in his paper delivered in 1908:

It is clear that there cannot be convection currents to any marked extent in this region

That there cannot be convection in the stratosphere is an article of faith in climate science to this very day.  This error arises due to a lack of appreciation of the heating properties of ozone as an absorber of long wave radiation from the surface of the Earth and conceptual confusions as to the nature of the atmosphere encapsulated in the continued use of the terms ‘troposphere’, tropopause and stratosphere’.  Mr Gold was aware of the heating properties of ozone but had no knowledge of the distribution of ozone according to latitude and altitude, its enhancement in winter hemisphere or the interaction with mesospheric air at the poles that drives change in ozone partial pressure over time.

The result of  ozone enhancement in high latitudes where there is a close conjunction of cold dense air from the mesosphere and warm light air heated by ozone is convection on a massive scale that corresponding to annular or ring like pattern of troughs in surface pressure manifesting in high latitudes and on a scale that dwarfs the manifestations of low surface pressure elsewhere on the planet, even under the pressure of direct solar radiation and massive precipitation, two forces that contribute very little to uplift in high latitudes. The flux in ozone driven convection is what gives rise to the phenomenon known as the ‘Annular Modes’, now well recognized in the annals of the IPCC, but regarded as a mystery both in terms of its mode of causation and its impact on climate.

Convection can be driven by heating of the surface. It can be driven from the lower atmosphere via precipitation at cloud level. And it can be driven by ozone heating in high latitudes where ozone tends to be ubiquitous throughout the atmospheric column.  Of these forces, the most powerful, pervasive and influential is the last. This pervasive regulating force,  is unrecognised in ‘climate science’ as it manifests in the works of the United Nations  International Panel on Climate Change. If it were recognized as the driver of the planetary winds and cloud cover we would no longer be speculating as to whether the activities of man are the cause of ‘climate change’.

Unfortunately, climatology is not yet at first base in understanding the generation of the planetary winds. Without an understanding of the origin of shifts in atmospheric mass or the physics behind the generation of cold core cyclones there is no possibility of understanding the source of natural climate change. We are then extraordinarily susceptible to the arguments of those who seek to exploit our ignorance.

Climate is not complex and nor is climate change. It is in the interest of every citizen, every voter and every taxpayer to take an interest in this matter and not leave it to the those who style themselves as professors, doctors of science or simply as ‘experts’.


It has long been supposed that the solar cycle influences climate and in particular it is supposed that as the sun becomes more active (more sunspots) the earth might be warmer. But, those who have closely examined the data suggest that a maxima in sunspot activity frequently coincides with a cooling of the tropics while the reverse is also the case. There is no evidence that the energy quotient in solar radiation increases with sunspot activity although the composition of solar radiation certainly does change within the sunspot cycle.

On the other hand geomagnetic activity wrought by the solar wind, while it rises and falls with sunspot activity  has a different mode of activity in that it conditions the behaviour of  the Earth’s magnetic field as it manifests in the atmosphere.  The ozone cycle via its effect on surface atmospheric pressure  has the capacity to greatly magnify small changes in atmospheric pressure in the same direction as the initial change wrought by geomagnetic activity. This impacts climate on both shorter time and longer time scales than the eleven year sunspot cycle..

Geomagnetic activity, as an initiating force has the capacity to change the ozone cycle by modulating the amount of NOx that is drawn into the ozonosphere via the polar vortex in winter. An enhanced flow of NOx either from the troposphere or the mesosphere erodes ozone and reduces the temperature of the stratosphere over the pole due to a ‘space occupying effect’. If cold mesospheric air is present the warmer air is displaced to lower latitudes. This is a natural dynamic that depends upon surface pressure, much more active in winter than summer. It is for this reason that ‘sudden stratospheric warmings’ are a winter phenomenon.

This natural ebb and flow of air between the mesosphere and the stratosphere is manifestly more influential in determining the partial pressure of ozone than the flux in short wave solar radiation. When the temperature of the stratosphere over the poles changes there is a knock on  effect, rippling across the atmosphere like little waves on a pond, ever smaller in amplitude as they propagate across the globe into the summer hemisphere.





Surface atmospheric temperature varies strongly month to month and year to year. The broad brush view is obtained by looking at variations across the decades. SAT by decade

In the broad we can say that in terms of the decadal variations:

  • Temperature in high latitudes is much more variable than in low latitudes.
  • Temperature is much more variable between 30°north latitude and the Arctic than elsewhere.
  • Cooling manifested in the early decades other than in near equatorial latitudes where the extent of temperature change is least.
  • It is clear that temperature change is a two way process.
  • Cooling occurred in the decade after 1986 in the tropics as greenhouse gases accumulated. We have no explanation for this cooling, and that which affected the highest latitudes and the latitude band 30-60° north from 1956 through to 1976 and are unable therefore to be certain that it will not recur.
  • Both the Arctic and the Antarctic began a warming phase starting with the decade 1977-86. The warming in the Antarctic is faster in the early phase but slower in the latter. The Arctic warmed particularly strongly after the turn of the century as the rate of warming in the Antarctic fell away. Greenhouse gases other than ozone are well mixed and vary very little according to latitude. Something other than greenhouse gases must be responsible for the variation in the rate of temperature change according to latitude.
  • In general the temperature of the mid latitudes of the northern hemisphere cooled and warmed with the Arctic but to a lesser extent.
  • The evolution of temperature in the tropics and the mid latitudes of the southern hemisphere is similar. These latitudes cooled slightly as the warming in high latitudes accelerated after 1977-86.


Here we look simply at the difference between the first and the last decade in each month of the year.

change in t by lat

  • The Antarctic warmed in winter and cooled in summer showing more change than the Arctic.
  • The Arctic warmed slightly in summer but a great deal in winter.
  • The mid latitudes of the northern hemisphere at 30-60° north warmed in autumn and spring. This lengthened the growing season in a part of the globe that includes the heartlands of Western Civilization, Western Europe and North America where winters are cold but can sometimes be severely cold. Industrialization and the ready availability of cheap energy have made it possible for these parts of the planet that experience very cold winters and a short growing season to support a greater population. Warming in autumn and spring has assisted this process.
  • We see that warming is in no sense ‘global’. Neither is it consistent  between one month and another.
  • In those places that suffer from cold, warming is temporarily constrained to the cooler winter months. Where winters are unfavourably cold, in fact most of the planet, this is beneficial.
  • Plainly the major dynamic here has nothing at all to do with the concentration of a greenhouse gas that is well mixed. If it were, the warming would vary little between the seasons and there is no reason to expect that it should vary with latitude.
  • If there is a background level of warming due to increasing greenhouse gases that provides a plateau upon which ‘other forces’ superimpose change then we would see that background warming manifest at that time and in that place where the ‘other forces’ are least active. Unless we can decide what those other forces are and be truly cognizant of the mechanism that is behind them we are unable to estimate the change that they are responsible for and can have no idea whether man is having an influence on he climate or not. If we go ahead and suggest/maintain that man is responsible for the warming of the globe as a whole we make an error in logic. We can not be sure of anything. To suggest that man is likely to be responsible and to assert that we can do this with a high level of confidence  is clearly overstepping the mark.

In this circumstance how are we to proceed? Plainly the bulk of the warming that has a seasonal component is not connected with greenhouse gases. We must ask what causes this warming. In particular what is it that causes warming in winter in high latitudes?

In the next chapter we look at the extent of variability in temperature according to the month of the year. We find that there is a consistent pulse attached to warming that indicates its source. At first glance the process of change is apparently  hemispheric in its incidence. However, when we look closer we see a unifying signal emanating from the Antarctic stratosphere that governs all. The degree of warming is very different according to latitude even though it bears a consistent time signature. There is a pacemaker that orders its heartbeat. The closer one approaches the poles the more impressive is the beat of that pulse. That pulse is strictly seasonal. The mechanism is fascinating. It represents a new frontier for climate science. Get out your stethoscope, gather round, here is a curiosity, here is a case that is entirely unfamiliar.



5 The enigma of the ‘cold core’polar cyclone


Source of data above:http://www.esrl.noaa.gov/psd/cgi-bin/data/timeseries/timeseries1.pl

When I started looking into atmospheric matters back in 2008 and I discovered that the temperature of the Antarctic in mid winter at 10 hPa had jumped in the 1970’s as the atmospheric pressure at the surface took a plunge it started me on a search for answers. This post tells you what I have discovered as a private self funded researcher seven years on.

The cold core polar cyclone

The ascent of the air at the core of a polar cyclone is a mystery because the near surface air in a polar cyclone is cold and dense. Polar cyclones form in high latitudes where the surface and the air in contact with it is very cold. Air that is cold and dense should not ascend. The  unsatisfying explanation that is offered in the meteorological literature has to do with fronts between cold and warm air and the Coriolis ‘force’. But the Coriolis ‘force’ is not a force at all. It explains the direction of rotation and has nothing to do with the force responsible for uplift or down-draft.

Anticyclones form in the mid latitudes where the surface is warmer than in high latitudes. This is the case despite the fact that anticyclones form over water that is relatively cold for the latitude, located on the eastern margins of the oceans. Anticyclones also form over cold land masses in winter. To take the land based anticyclone out of the equation we can examine the summer hemisphere.

It is now possible to examine the atmosphere in real time and toggle back and forward to look at it as on some day in the past. It’s animated too which is a real help. You get spot values at the click of your mouse. This is a fantastic resource for a student of the atmosphere. Find it at:  earth.nullschool.net.

First, sea surface temperature. Observe that the eastern margin of the Pacific is cooler. The ocean moves clockwise, driven by the winds.


The day I have chosen is the first day of September 2015. We will stick to this single day throughout.

Below we have atmospheric pressure with an overlay of wind at 1000 hPa.

The lines indicate the circulation of the winds. Three tropical cyclones manifest south of a large high pressure cell. The high has a central pressure of 1030 hPa.  Cold core Polar cyclones are also in evidence associated with zones of low surface pressure in high latitudes. The air circulates in an anticlockwise direction around cyclones and a clockwise direction around anticyclones.

1000hPa SLP

The map below shows Wind Pressure Density at 1000 hPa (close to the surface) in terms of kilowatts of wind energy per square metre. Tropical cyclones are powerful systems but the energy is generated very close to the core and has little lateral spread . By contrast the cold core polar cyclone shows a fraction of the energy that is generated in a tropical cyclone and the energy manifests remotely, and in particular over the oceans rather than the land.


At 850 hPa (1000 metres) the energy attached to a cold core polar cyclone manifests over both the land and the sea.


The map below shows air temperature at 850 hPa (1000 metres). Shades of green represent temperatures above 0°C . Shades of blue indicate temperatures below 0°C. It is apparent that the air in cold core cyclones at 850 hPa is close to 0°C, while the air in the major anticyclone rejoices in a temperature of 12°C, well below the 24°C that is the temperature of the sea surface only 1000 metres below.

850 Temp

Below we have the temperature of the air at 500 hPa, roughly 5.5 kilometres in elevation with half the atmospheric column below and half above. All temperatures are sub zero.  At its heart the anticyclone has a temperature of -5°C  while the cold core cyclones have central temperature between -24 and -35°C.

500 temp

Below again: There is a marked increase in wind pressure density on the outer margins of cold core cyclones at 500 hPa. But each polar cyclone conserves a relatively extensive core where the horizontal vector in the movement of the air is slight and we can infer that the vertical vector is pronounced. These cold core cyclones are now immensely more powerful and extensive systems than tropical cyclones.

500 WPD

At the 250 hPa pressure level, about 9 kilometres in elevation, extreme wind speeds manifest on the outer margins of cold core polar cyclones while the cores of vertically ascending air are extensive.

250 wind

Below, we see that at 250 hPa the ascending air in the core of a polar cyclone is warmer than the the rapidly rotating air that surrounds it.

250hPa temperature

So, we see that at 9 km in elevation a polar cyclone has a warm core. The laws of physics are not flouted by the ascent of relatively dense air that is somehow magically displaced upwards by air of lower density. It is the power generated aloft that pulls denser air into the system from below. In effect we have the engine attached to an extraction fan above, a pipe extending towards the surface, narrowing as it does so, sucking dense air into the upper atmosphere. This is like a vacuum cleaner that sucks in cold air and pushes out hot air. At 250 hPa just 25% of the atmosphere is above and 75% below. Somewhere between the 500 hPa and the 250 hPa pressure level (5.5 km to 9 km) sufficient energy is imparted to the atmospheric column within these polar lows to reduce the lapse rate of the air with increasing altitude to the point that the air within these polar cyclones becomes relatively warmer and less dense than the air that surrounds the core.

Gordon Dobson who invented the spectrophotometer to measure total column ozone in 1924 very quickly discovered that ozone mapped surface pressure with more ozone in the atmospheric column of low pressure systems than in high pressure systems. De Bort, the Frenchman who put more than 500 balloons into the atmosphere around 1900 discovered that the air became warmer in cells of low surface pressure at a lower elevation than in high pressure cells. Both gentlemen were independently wealthy private researchers who considered that the science of their day was not settled.

There should be no mystery as to the cause of this phenomenon. Once initiated, the system gains momentum by virtue of the fact that the air that is being elevated is warmer that the air through which it ascends. This is so because the surface air is warmer than the air aloft. This gives rise to very extensive areas of extremely low surface pressure in high latitudes.

As the ozone content of the air increases in winter, the jet streams so formed become more intense.

As the ozone content of the air varies from year to year, so too does surface pressure in high latitudes.

As surface pressure falls away in high latitudes it rises in the mid latitudes where anticyclones form.

How far does the air ascend in polar lows?

70 wind

The pattern of ascent is still present, albeit more gently so, at 70 hPa (above) with 93% of the weight of the atmosphere below, an elevation of just 17 kilometres. A balancing descent occurs in the mid latitudes associated with anticyclones.

10hPa wind

The air is still mobile at 10 hPa (30km) with 99% of the atmosphere below. Importantly, there is both ascent and descent.

10 pacific descent

See above. At 10 hPa in early spring in the southern hemisphere the air is very mobile in high latitudes. Gentle descent is apparent over the cold waters south of the equator in the eastern Pacific. This feeds ozone into anticyclones.

70 pacific desc

Above, at 70 hPa we have very strong ascent in the high latitudes and broad areas of gentle descent in the mid latitudes. The southern hemisphere is approaching its seasonal peak in ozone  partial pressure that occurs in October. The winds at 70 hPa reflect where that peak occurs. We are looking at a donut shape sitting atop the Antarctic continent.

250 sth pacific

At 250 hPa the southern hemisphere is in a frenzy driven by differences in ozone partial pressure between air masses of different origin. Patterns of descent will drive the evolution of geopotential height, cloud cover and surface temperature in the manner described in chapter 3.

500 globe pacific

At 500 hPa there is a relaxation in the circulation.

700 desc Pacific

At 700 hPa the winds are more benign. The pattern of descent over the south Eastern Pacific is typical.

700 pacific

The pattern of surface pressure is closely aligned with surface winds. Very high pressure in the south eastern Pacific is associated with very cold waters in this region promoting settlement. This area gains atmospheric mass very strongly when it is lost at 60-70° south very much influencing the strength of the trades and the westerlies across the Pacific and thereby the ocean currents that determine the relative extension of the ‘cold tongue’ across the equatorial Pacific that is the essence of the ENSO phenomenon.

70 Antarctic SLP wind

The flow of the air over Antarctica at 70 hPa is very much related to the pattern of surface pressure forced by the ozone content of the air at lower altitudes. It is the ozone content of the air between 500 hPa and  the 250 hPa that is deterministic so far as the circulation of the winds is concerned.

Notice the zone of high surface pressure over the Antarctic content that sets up a pattern of descent near the surface.

Mesospheric air descends in the core of this circulation. It is relatively deficient in ozone and has damaging levels of the ozone destroyer NOx . The British Antarctic base at Halley Bay lies to the East of the Antarctic Peninsula. When  total column ozone was first measured there using Dobson’s spectrophotometer in 1956 Dobson was amazed at the relative deficit in ozone by comparison with the northern hemisphere. But the deficit disappeared in November, as it does today. As surface pressure has fallen in high southern latitudes due to the increase in the partial pressure of ozone in the donut shaped pattern of polar cyclone activity that surrounds Antarctica, as atmospheric pressure has increased in the mid latitudes of the southern hemisphere expanding the Hadley cell in response to falling pressure in high latitudes, the donut of low pressure has been forced south, the tongue of mesospheric air is narrowed but it penetrates more deeply. This is the chief, albeit unrealized, one hundred percent home grown, all natural, ozone hole dynamic.


So called ‘cold core’ polar cyclones are warm core aloft and they do not contradict the laws of physics. By virtue of the fact that they depend for their activity on the partial pressure of ozone in the air that fluctuates on all time scales we must look to the cause of these fluctuations if we wish to understand the climate at the surface of the globe. It is the exchange of atmospheric mass between high and other latitudes that determines surface wind, cloud cover , the energy flux into the oceans and surface temperature. This is at the root of weather and climate change. I will demonstrate in later chapters that what happens in Antarctica rules all.

The flux in surface pressure that is wrought by ozone is greatest in winter and this puts a date stamp on the  surface temperature record. That identity will be revealed in due course.





In this post I want to go straight to the nature of the forces responsible for surface atmospheric pressure and surface temperature. Essentially pressure and temperature are a direct response to the nature of the stratosphere in the local domain. The local domain in the stratosphere changes dramatically according to latitude and season and also over time in response to change in the partial pressure of ozone in the upper atmosphere. Unfortunately, the role of ozone in determining surface pressure, temperature and wind is unrecognised in climate science. This will change.


Gas molecules have weight. The greater the number of molecules in a column of air the greater will be the pressure measured at the surface.

Imagine you are ascending in a balloon and you have an instrument on board that measures atmospheric pressure. At the surface it indicates a pressure of 1000 hPa (or 1 Bar or 1000 millibars or 29.53 inches of mercury).  You watch the needle falling as you ascend.  At 500 hPa with half the atmosphere below and half above you ascertain that your elevation is 5600 metres.  Each time you perform this exercise you get a different figure because the atmosphere is subject to warming that changes its density. If today’s height is 5600 metres and the average is 5500 meters you know the lower half is warmer than normal. The height of a pressure level measured in metres is called its geopotential height. Geopotential height is a proxy for air density below the point of measurement. It is also a proxy for surface pressure with pressure increasing as geopotential height increases.

Air density varies with temperature and moisture levels. The contribution of moisture is most important in low latitudes and close to the surface of the planet where humidity is high. It has little importance in the stratosphere where the air is very dry.

Imagine a column of gas contained within a cylinder that stretches from the surface of the Earth to well beyond the limits of the atmosphere. The gas inside is held in close embrace due to the gravitational attraction of the Earth. The cylinder is open at the top. When the air is heated it rises up in the cylinder but cannot spill over. In this situation surface pressure can never change.

The atmospheric column inside that cylinder could be heated at its base, in the middle or in the upper half. Let’s imagine that the energy could be retained in the zone where the heat was applied. If heating was applied in the bottom or the middle of the column the half way point would move upwards. If the heating was applied to just the upper half of the column then the geopotential height at 500 hPa should not change. Height would increase at all points above 500 hPa but not below. If we find that the 500 hPa level is elevated we can deduce that, despite our intention to heat only the upper half of the column, somehow, energy travelled downwards into the lower half.


If the glass cylinder was just high enough to contain the air prior to heating the column, some of the molecules would spill out of the top of the cylinder as heat was applied.  It matters not where the heat is applied. Then, surface pressure as measured at the bottom of the cylinder would diminish.  This is what happens in high latitudes where ozone causes heating of the upper part of the atmospheric column producing Polar Cyclones. The heating is substantial because to produce low surface pressure (let alone the planetary minimum that is actually achieved) it has to compensate for the fact that the lower part of the column is cold and almost as dense as it is possible to achieve on Earth, and then some.  Atmospheric pressure at the surface can be driven down to 980 hPa. In the process, and because this phenomenon occurs over the entire latitude band 50-90° south a loss of atmospheric pressure in high latitudes represents a transfer of atmospheric mass to other latitudes. When air exits the cylinder, it finishes up somewhere else.

Cyclones that develop in the tropics are called warm core cyclones.  Cyclones that develop under a warm stratosphere are mistakenly called cold core cyclones, referring to the temperature of the air at the surface. Some cyclones form in the stratosphere and do not penetrate into the troposphere. No cyclone can ever be born without a warm core somewhere. The uniqueness of the Polar cyclone is that its warmth is generated aloft.  You can start an updraught in a chimney with a candle at any elevation.

The Polar Cyclone is a product of the presence of ozone throughout most of the atmospheric profile. This is especially so in winter and most intensely in the southern hemisphere in particular. The associated uplift in the lower atmosphere is a response to the intensity of the forces generated aloft. Essentially, the movement of the air is no different to the convergence of air at the surface that occurs in a tropical cyclone in response to the release of  latent heat of condensation aloft, albeit, less aloft than in the polar atmosphere. That such cyclones can be generated in the polar atmosphere testifies to the energy that is transferred from the ozone molecule to the atmosphere at large. That energy comes from the Earth itself in the form of infra-red radiation.


Why is this phenomenon not recognized in climate science: Firstly, the ‘stratosphere’ is supposed to be ‘stratified and incapable of generating convection? Secondly, climate science takes little interest in the stratosphere and is obsessed with the notion that wind is driven by energy flows near the surface. Thirdly climate scientists have failed to notice that what they describe as a ‘troposphere’, a zone rich in moisture that has a cold trap that separates the troposphere from the stratosphere exists at the equator and nowhere else.  The surface is much colder at higher latitudes. The air gets drier in high latitudes. The cold point ascends into the upper stratosphere in winter and no longer constitutes the boundary between one realm containing ozone and another that does not. If we want to discern a boundary between a realm that has no ozone and one that does, we need to look at some other metric, (for example the rate of temperature decline with increasing altitude) to work out where that fuzzy zone is located. The further from the equator the fuzzier it will be. These are mistakes born of over-generalization and a failure to closely observe reality. Fourthly, there is a predilection to consider that the Earth system is closed to external influences after a plethora of unsuccessful attempts over a long period of time to demonstrate otherwise. The notion is that only cranks suggest that the sun could be influential in driving climate. Fifthly, there is a strong tendency for recent generations of ‘climate scientists’ to avoid speculation as to cause and effect in favour of mathematical analysis that is taken to somehow ‘account for’ things. The discovery of connections and even ‘teleconnections’ between disparate phenomena is the apparent purpose. There appears to be a lack of realization that ‘correlation does not mean causation and the lack of correlation does not mean that a causal relationship  can be ruled out.’. Maths rather than physics graduates enter this field. Sixthly, there is the failure to recognise ozone as a very unequally distributed greenhouse gas and that there is a clear signal in the surface temperature record that unequivocally implicates ozone as the generator of temperature variations at the surface of the Earth.  But most critically and disappointingly there is the notion that ‘the science is settled’. That represents either complacency or a determination  to force a particular viewpoint.


Ozone absorbs radiation from the Earth itself at a wave length of 9-10 um. One um is one millionth of a metre in length. This unit is called a ‘micron’ or a ‘micrometre’. Radiation from the earth is heavily concentrated around that wave length. The radiation from the sun arrives in a wide spread of wave lengths of which a small portion is in the infra-red spectrum. In the atmosphere outgoing radiation is closely focussed about the wave length that excites ozone. At the outer limits of the atmosphere we can detect how much ozone is in the air by measuring the attenuated energy that passes by at particular wave lengths. At 9-10 um t’s never entirely used up and is in effect inexhaustible given the tiny concentration of the gas that it excites.


In low latitudes the atmospheric column is warmer in the lower portion and colder aloft due to the relative deficiency in ozone. The increase in density aloft has to be substantial to compensate for the low density below so that surface pressure gets to be on average much higher. Accordingly there is much less ozone in the stratosphere above high pressure cells. The portion of the upper atmosphere containing ozone is smaller in vertical extent in high pressure cells (above 300 hPa) than low pressure cells (above 500 hPa) so that helps.


A polar cyclone that is formed in the stratosphere in winter causes ascent throughout the atmospheric column. Air that rises must be balanced by air that descends. Ozone change in high latitudes is quickly propagated to lower latitudes where the change is muted due to the increasing radius of the Earth as one approaches the equator. In the mid latitudes enormous high pressure cells convey ozone into the lower atmosphere, raising its temperature, evaporating cloud as surface pressure increases. The increase in temperature is tied to the increase in pressure due to the shift in atmospheric mass from high altitudes, in turn due to episodic heating of the high latitude stratosphere tied in turn to a reduction in the rate of ingress of NOx from the mesosphere via the polar vortex.

The implications are: the stratosphere drives weather and climate on all time scales. We need to work out what drives the stratosphere.

Is anything not clear? Please tell me if its not……could be the result of a dyslexic impulse on my part.

Heresy and orthodoxy

Overnight, I have a comment on my Chapter 3 from none other than Anthony Watts. ‘What an atrocious article’. Anthony has certainly nailed his colours to the wall with that comment. What is he on about? I reply below:

This post is an impromptu based upon some interesting material that turned up in a search on the words: ‘ozone surface pressure’ the day before yesterday.

In 1968 Gordon Dobson, the man measured the quantity of ozone in the stratosphere and revolutionized our understanding of the middle atmosphere  reviewed his life’s work (see here:  http://esrl.noaa.gov/gmd/ozwv/dobson/papers/Applied_Optics_v7_1968.pdf) and wrote the passage italicised below that gives a good indication of the methodical approach that the man had to his work. The wartime government in the UK was concerned that aircraft contrails were giving information to the enemy about aircraft movements and his task was to measure the amount of water vapour in the air where these aircraft flew. But his enduring interest was to discover the nature of the atmosphere and the drivers of surface weather because he was a meteorologist :

The wartime measurements of the humidity of the upper atmosphere, showing that the stratosphere is very dry, were of interest in relation to the question of the equilibrium temperature of the stratosphere. The temperature of the stratosphere was generally regarded as being controlled by the absorption and emission of longwave radiation, the chief absorbing gases being water vapor, carbon dioxide, and ozone. If the air in the stratosphere were nearly saturated with water vapor, then water vapor would far outweigh the others in importance. When it was found that the stratosphere only contained a few percent of the water vapor required to saturate it, the picture appeared quite different and the three gases appeared to be of equal importance in determining the temperature of the stratosphere. Another interesting result to come out of the measurements with the frost point hygrometer was that there were often layers of very dry air quite low down in the troposphere, which must have descended from high in the troposphere if not from the stratosphere. The results of this wartime work were presented in the Bakerian Lecture of the Royal Society for 1945.

Dobson lectured in meteorology at Oxford. A biography of Dobson is provided by University of Oxford Department of Physics at:

There,  you will find this statement:

Dobson inferred correctly that the cause of the warm stratosphere was heating by the absorption of ultraviolet solar radiation by ozone,

Longwave radiation is not ultraviolet radiation.

Apart from being a direct contradiction of what Dobson had written in 1968 the notion that the stratosphere owes its temperature to interception of short wave ultraviolet light is nonsense and you must ask yourself why the person writing Dobson’s biography should take that diametrically opposed position. Anyone who thinks about it for a moment will decide that Dobson is right and his biographer wrong. If short wave radiation were responsible for the heating of the stratosphere it would be warmest over the equator. The stratosphere is a markedly heterogeneous medium in terms of its ozone content and in high latitudes during winter there are relatively warm parcels of air that are well out of the reach of short wave solar radiation. The only form of energy available to these parcels is outgoing long wave. Ozone rich air gets warmer. If short wave energy were the only form available to heat ozone there would be very little differentiation in the temperature of the stratosphere in winter and meteorologists would not be setting up this website to study the variations in ozone content, atmospheric temperature and geopotential height in high latitudes :  http://www.cpc.ncep.noaa.gov/products/stratosphere/

Between 200 hPa and 10 hPa we have 20% of the atmosphere. Above 10 hPa we have just 1% of the atmosphere of which the stratosphere takes up the interval to 0.1 hPa. Above o.1 hPa we have just 0.01% of the atmosphere and none of it is classified as stratosphere. Short wave solar radiation contributes strongly to the heating of the stratosphere above 10 hPa. Long wave radiation from the Earth contributes to the heating of the stratosphere throughout, and into the mesosphere as well. If you must choose one of these sources of radiation as being dominant it is the latter.

Dobson spent most of his life in the field of optics (generation, propagation, and detection of electromagnetic radiation) and in manufacturing instruments to measure the energy in short wave spectra. His spectrophotometer selected out the wave length that is absorbed by ozone in the the process of its destruction in the stratosphere and compared that to wave lengths unaffected by their passage through the atmosphere and the ratio between the two enabled him to infer the quantity of ozone in the atmospheric column. The use of his instrument  resulted in major advances in our understanding of the atmosphere. He manufactured these instruments in a garden shed at his home. Later when the instruments were manufactured by others every one of them was brought to his garden shed for calibration against his original Dobson Meter Number 1.

Dobson was an expert when it came to the difference between short wave ionising radiation coming from the sun and long wave coming in the main from the Earth itself.

If you take the position that the stratosphere is heated by short wave incoming radiation alone, you deny that ozone is a greenhouse gas. You deny that it absorbs at 9-10 micrometres, a wave length that lies in the peak of the earth’s spectrum of infra-red emission and you deny that it can be responsible, via its effect on the density of the upper atmosphere for variations in surface pressure. AND THAT IS THE ENTIRE POINT.

Dobson who had worked briefly at the Eskdalemuir Geomagnetic Observatory in Scotland  wrote as follows in the same report:

Chree,’ using the first year’s results at Oxford had shown that there appeared to be a connection between magnetic activity and the amount of ozone, the amount of ozone being greater on magnetically disturbed days. Lawrence used the Oxford ozone values for 1926 and 1927 and in each year found the same relation as Chree had done. However, when he used the average ozone values for Northwest Europe-which should be less affected by local meteorological conditions-he found no relation at all, so it was concluded that both Chree’s results and his earlier ones had been accidental. This investigation has never been repeated.

And the decision to close off that particular line of investigation was designed to effectively shut the door on inquiries designed to ascertain if there existed a link between the solar wind and the flux in surface pressure at the surface of the Earth via the impact of the solar wind on the electromagnetic medium that is the upper atmosphere. There are false trails in science but people like Dobson don’t go to the trouble of mentioning them. There is an air of regret in the last sentence of that paragraph: This investigation has never been repeated.

This sort of obfuscation and denial is rife in the world of climate science as it is carried on in academic institutions and the IPCC where Dobsons successor in atmsopheric science at Oxford was the lead author of the first three IPCC reports . Though it may have been possible to shut down this type of inquiry at Oxford it continues elsewhere and the evidence of the link between atmospheric pressure and geomagnetic activity continues to accrue.

In his 1968 summary of his life’s work Dobson wrote this about his very early observation that Total Column Ozone mapped surface pressure:

At this time it was well known from the work of Dines and others that the stratosphere was warmer in cyclonic conditions and colder in anticyclonic conditions, and Lindemann also suggested that these differences of temperature might be due to different amounts of ozone in the stratosphere-cyclonic conditions having much ozone and anticyclonic conditions little ozone. It also seemed just possible that cyclones and anticyclones might be actually caused by different amounts of ozone in the upper atmosphere. We know now that there is, indeed, more ozone in cyclonic conditions than in anticyclonic conditions but that this is not the cause of the different pressure systems.

When I read this paragraph I see arm twisting going on and Dobson resisting. He takes every opportunity to suggest that ozone drives surface pressure, repeatedly states the connection, reminds people that Lindemann thought that ozone drove temperature (and therefore density) and then, surprisingly, in the last dozen words he capitulates.

Dobson had a position at Oxford University that was no doubt important to him. My guess is that he was being leaned on  by  people who were dead set on pushing a different narrative. These people were well aware that if surface pressure were to be seen to be dependent upon the ozone content of the upper half of the atmospheric column it would spoil their narrative and they prevailed upon him to alter his words accordingly.

Tell me this: if the presence of ozone in the upper half of a column of ascending air is not the cause of low surface pressure then, by what process can ozone enter a column of ascending air that draws its air from the lower atmosphere that is ozone deficient?

The narrative that denies ozone a role in determining surface pressure requires strict separation of a ‘troposphere’ from a ‘stratosphere’ so that convection in low pressure cells is limited to the troposphere. In point of fact cyclogenisis (indicated by the wind strength and enhanced density differential) increases from the surface into the stratosphere in a polar cyclone. The geopotential height anomaly associated with the Annular Modes that represent the shift in surface pressure between high latitudes and the rest of the globe is greatest in the stratosphere.

My long post Chapter 4  makes the exact same point as the last paragraph by examining the temperature profile of each latitude band between the inter-tropical convergence and 90° south.

“It would not be impossible to prove with sufficient repetition and a psychological understanding of the people concerned that a square is in fact a circle. They are mere words, and words can be molded until they clothe ideas and disguise.”
Joseph Goebbels

“That propaganda is good which leads to success, and that is bad which fails to achieve the desired result. It is not propaganda’s task to be intelligent, its task is to lead to success.”
Joseph Goebbels

If ordinary people can not be a little more intelligent the forces of darkness will prevail. For humanity’s sake, get angry. Do not let people who follow in Goebbel’s footsteps push you around.


From the outset let me say that my investigations suggest that the ‘Greenhouse Effect’ is not something that we have to contend with in atmospheric reality. There is another mode of climate change that appears to be responsible for the change in the temperature of the globe over the period of record. That mode of change is capable of explaining variations in both the short and long term in both directions,  both warming and cooling. It can explain warming in one place and simultaneous cooling in another. In short it is very well adapted to explain the climate changes that we observe from daily through to centennial time scales ……. and to do so, exclusively and completely.


Geopotential height is a measure of the elevation of a pressure level in the atmosphere. Low heights indicate low pressure zones where the lower atmosphere is dense and cool. High heights indicate a high pressure zone where the lower atmosphere is warm and relatively rarefied.

At a surface pressure of 1000 hectopascals (hPa) the 500  pressure level is located at 5 kilometres in elevation. The upper half of the column (above the 500 hPa level) runs from 5 km through to the limits of the atmosphere at about 350 km. But 98% of the upper portion is located between 500 hPa and the 10 hPa pressure level that is found at an elevation of just 30 kilometres. You can walk 30 km in six hours, jog there in three or get there by bicycle in an hour and a half. From a good vantage point in clean air you can see objects that are 30 km away. As surface dwellers we tend to imagine that the atmosphere is vast. Its not.

Below, we have a representation of the temperature of the atmosphere above the equator in 2015. Notice the location of the 500 hPa and the 10 hPa pressure levels, the gradual decline in temperature from the surface to the 100 hPa pressure level and the very gradual increase above that level. That temperature increase is due to the presence of ozone that, as a greenhouse gas, is excited by long wave radiation from the Earth. Importantly, the change in the temperature in the upper levels is not smooth, its perturbed, and if we were to look at the data across the years and decades we would see strong variability.

This is the situation at the equator where the influence of ozone cuts in at about 15 kilometres in elevation.At the poles it cuts in at half that elevation.

atmosphere over equator

Gordon Dobson who first used a spectrophotometer to measure Total Column Ozone noticed that the distribution of ozone varies with surface pressure. Specifically, the atmospheric column where surface pressure is low is composed of a lower portion that is cold and dense. Low pressure cells originate in high latitudes where the near surface air is cold and dense.  But, the upper portion is rich in ozone to the extent that the number of molecules in the entire column is reduced giving rise to low surface pressure. The paradox is that cold dense air in the lower part of the atmospheric column is accompanied by warmer, relatively less dense air aloft. It is the inflation of the upper half of the atmospheric column, due to its ozone content, that is responsible  for low surface pressure.

Based on Dobson’s observations we can suggest a rule of thumb. It is this: The variation in the density of the upper half of the atmospheric column, due to its ozone content, accounts for variations in surface atmospheric pressure. You might not realise it at this point but this observation turns climatology, as we know it today, precisely on its head. Let me reiterate the point in a different form of words. The ozone content of the upper air drives surface winds. Here is another formulation: The character of the troposphere is determined in the stratosphere.

This was the interpretation of the atmosphere that was gaining ground prior to the 1950’s. But the world of climate science turned from observation towards mathematical abstraction in the 1960’s and has never looked back to take into account observational realities.


High pressure cells are found mainly over the oceans in the mid latitudes. They create clear sky windows. The surface warms because more sunlight reaches the surface rather than being reflected by clouds. Surface pressure is high because of a deficiency in ozone in the more extensive upper half of the atmospheric column that is accordingly relatively dense. Despite relatively low density in the lower part of the column, the enhanced density of the upper half of the column renders the weight of the entire column, and therefore surface pressure, superior.

Surface pressure is intimately associated with surface weather and climate. Surface pressure governs the planetary winds. It follows that the planetary winds evolve according to change in the ozone content of the upper half of the atmospheric column. Yes, in the terms that we are fond of employing, the stratosphere is the troposphere. The stratosphere is where weather and climate is determined. As Gordon Dobson observed back in 1924, weather   evolves according to the ozone content of the air. But the significance of his observation  was lost on those who replaced him. His successors were not observers but ideologues. The account of climate science became a servant of people with a social agenda is told here.

Indeed, the relationship between geopotential height,  surface pressure and surface temperature is intimate. In 2002 Polanski  found that he could accurately reconstruct 500 hPa heights using just sea level pressure and surface air temperature data. He noted that the reconstruction  was more accurate in winter and in mid to high latitudes where variability in both surface temperature and pressure is greater. The reconstruction was less accurate in low latitudes and indeed wherever variability in surface temperature and pressure is low. You can see an account of Polanski’s research here:(http://research.jisao.washington.edu/wallace/polansky_thesis.pdf). This is an excellent instance of deduction from result back to cause. At this point, just remember that surface pressure, geopotential height and surface temperature are linked with surface temperature a product of pressure and geopotential height.


Now to the nitty-gritty of surface temperature variation….climate change:

The three maps below show:

  1. The spatial distribution of geopotential height anomalies in January 2015
  2. Anomalies in the temperature in the lower troposphere in January 2015
  3. Surface temperature anomalies in January 2015500hPa heightsLT Jan 2015

GISS Surface temperature January 2015Map Sources: http://data.giss.nasa.gov/gistemp/maps/    http://www1.ncdc.noaa.gov/pub/data/cmb/sotc/drought/2015/01/hgtanomaly-global-201501.gif, http://nsstc.uah.edu/climate/  http://nsstc.uah.edu/climate/

The first map shows geopotential height anomalies. The second map indicates that the lower troposphere is indeed anomalously warm where 500 hPa heights are anomalously elevated.  The third map indicates that the surface is anomalously warm where heights are anomalously elevated. Remember that high heights indicate a high pressure zone where the lower atmosphere is warm and relatively rarefied.This gives rise to a rule of thumb that accords with common sense and daily observation. The surface warms when atmospheric pressure increases, the air warms and cloud cover falls away. 

The question arises: What causes atmospheric pressure to increase in the mid latitudes. The short answer is a persistent shift in atmospheric mass from high latitudes, especially from the winter hemisphere where ozone proliferates reducing the density of the upper part of the atmospheric column and  so reducing surface atmospheric pressure. For those of you familiar with the notion of the ‘Annular Modes’ or its northern hemisphere manifestation, the ‘Arctic Oscillation’ or perhaps the North Atlantic Oscillation I am here describing the causation of all these phenomena. All involve a change in the relationship between surface pressure in the mid latitudes and that in high latitudes. These are recognised as the dominant modes of natural climate change on all time scales…..cause unknown!


The figure below shows the evolution of temperature at the surface, 600 hPa, 300 hPa and 200 hPa over the Indian Ocean between Africa and Australia at latitude 30-40° south over the period 1976 through till December 1990. In order to facilitate comparison at very different temperatures the data is shown as anomalies with respect to the 1948-2015 average.

Air T in a column

Source for both graphs, above and below: http://www.esrl.noaa.gov/psd/cgi-bin/data/timeseries/timeseries1.pl

It is plain that the higher the elevation the more wildly does the temperature gyrate and not always in concert with the air at the surface.This is also apparent when we compare anomalies in temperature near the surface and at 600 hPa as seen below.Indian Ocean surface and 600hPa T

Plainly, the variation of the temperature at the surface does not explain the variations at 600 hPa. Temperature at 600 hPa is affected by the ozone content in the upper half of the atmospheric column. The ozone content of the stratosphere is determined in the upper atmosphere in interaction with the mesosphere (where the ozone content and the temperature of the air diminishes with increasing altitude) and the ionosphere where short wave solar radiation ionises the atmosphere making possible the formation of ozone and other compounds injurious to ozone).

Indeed, it is un-physical (an impossibility) that a small temperature increase at the surface could be responsible for a greater temperature increase aloft. The upper air is independently warmed by ozone that absorbs long wave radiation from the Earth. Warming and cooling of the air aloft is independent of change in the temperature of the air at the surface and the prime determinant of surface atmospheric pressure (our first rule of thumb) and surface temperature.

To reiterate: High pressure cells are characterised by down-draft.  Air can hold water vapour according to its temperature. Descending air is warming due to increasing compression. Descending air will not produce cloud. To the extent that the  atmospheric column has  cloud it will thin as the air warms.This is why our second rule of thumb works so well. To remind you here it is again: The surface warms when atmospheric pressure increases and cloud cover falls away. 

It follows that surface temperature in the mid latitudes,  a zone inhabited by high pressure cells, much subject to minute variations in surface pressure as atmosphere shifts to and from the poles , very much depends on the ozone content of the air aloft.


The explanation given for the origin of warming in the mid latitudes via loss of cloud cover does not explain warming in the total darkness of the polar night that is pretty obvious in the third diagram above. Why is it so? The mode of causation follows from the minute increase of pressure in mid latitudes and a dramatic fall in high latitudes. It involves the replacement of  cold with warm air. Lower surface pressure in higher latitudes and higher in the mid latitudes involves a change in the origin of the air that always flows from high to low pressure. The solar energy that accrues in low latitudes is constantly being redistributed to higher latitudes via the movement of the air. Exaggerate the movement from the equator to the pole by changing the surface pressure relationship and the pole warms.

The variation in the ozone content of the air in high latitudes, occurring in winter time is the source of change in cloud cover in the mid latitudes. It is also the origin of changes in the winds according to change in the pressure gradient between the equator and the pole. All we need to do to change the average temperature of the surface of the Earth is re-distribute the warmer air.


Dobson’s observation that surface weather varies with total column ozone is a vital clue that leads us to an explanation of the origins of the natural variation in climate. Accordingly we should look carefully at the influence of ozone on the temperature and density of the upper air. Specifically, we must ascertain the particular altitude at which the presence of trace amounts of ozone begins to affect the temperature of the air (and therefore cloud cover) and whether and to what extent that altitude varies with latitude? The answer will lead, in time, because nothing happens as quickly as we might like it to happen, to a revolution in our understanding of the Earth system upon which man depends for his sustenance.

If an increase in the ozone content of the upper air can cause the temperature of the air to increase at the surface of the planet on a month to month basis then we must examine the long term evolution of the ozone content of the air to explain surface temperature change on annual, decade and longer time scales. Equally, we can study the evolution of surface pressure over time that tells us where the wind is coming from. Or indeed, we can simply study the change that occurs in the speed of the wind because that is related to its ability to convey energy from warm to cool locations.These are the central concerns of this work.

Quantifying change due to natural causes is an essential pre-requisite  to the determination of whether in fact, as is widely believed, man is spoiling his nest via the emission of so called ‘greenhouse gases’.

It appears to me, via a close examination of the surface temperature record across the globe that there is no background level of temperature increase that is underpinning the temperature increase (and decrease) that varies so widely (and so naturally) according to hemisphere, latitude, location and season. That natural mode of change is what we need to explain.If we don’t, we will be at the mercy of of  those who want to attribute any and every change to the works of man in order to promote their own, in many instances, expensive and damaging agendas.