40 A WIND FROM THE SOUTH AND A WIND FROM THE NORTH

Ecclesiastes 1:6
The wind goeth toward the south, and turneth about unto the north; it whirleth about continually, and the wind returneth again according to his circuits.

This post revises key concepts that relate to the evolution of climate. Good teaching is about saying it again in slightly different ways until it sinks in. This caters for the students who can’t tune in at a particular time and many others whose perceptual frameworks are sort of ‘frozen’. Its also possible that the message can be delivered without the  necessary flair.

Knock-knock.  New idea. Fundamental to the nature of Earth is the difference between  the warmth of low latitudes and the cold of high latitudes.  Without the redistribution of energy by wind and water the extent of the habitable latitudes would be tiny. In the tropics there is little variation in the nature of the air from day to day. But in the mid and high latitudes change is the rule.  When the wind changes in a systematic fashion  to establish new states, we have climate change. The further we depart from the equator, the greater is the change that is experienced.

The air moves from zones of high to zones of low surface pressure. Pre-eminent in terms of low surface pressure is the Antarctic Circumpolar Trough. It is the zone coloured orange in figure 1.

Annual SLP
Figure 1

Kalnay et al’s reanalysis of 1996 to be found here. shows the evolution of surface pressure by latitude over time and is presented in a graphical format in figures 2 and 3.

July pressure
Figure 2.
January pressure
Figure 3

Plainly, the work that is done in redistributing energy across the latitudes is dependent on the evolution of surface pressure in the Antarctic Circumpolar trough and to a lesser extent the latitudes north of 50-60° north.

 

40-60-n-and-s-t-air
Figure 4

Figure 4 plots the temperature of the air as it evolved in the year 2015 at  500 hPa at 40-60° of latitude in the northern hemisphere at left and the southern at right. Plainly there is a north-west to south-east orientation in the movement of the air masses as  the atmosphere super-rotates about the Earth in the same direction that the Earth rotates, but faster. The speed of rotation increases in the southern hemisphere where the angle of attack is more aligned with the parallels of latitude. The air spirals from north to south at all latitudes.Warmer parcels will have an ascending  tendency while colder parcels will be descending.

THE IMPORTANCE OF POLAR CYCLONES

New Concept: It is polar cyclones that are responsible for the intensity and evolution of the circumpolar trough.

A core theme of this work is that Polar Cyclones are energised by warm, low density cores in that space where the troposphere overlaps with the stratosphere. Differences in the ozone content of the air gives rise to differences in air density. A chain of cyclones on the margins of Antarctica   give rise to a rapidly circulating polar vortex in the stratosphere. There are no limits to convection in the stratosphere.

In summer the air rises to the limits of the atmosphere directly over the continent of Antarctica but in winter there is descent. A rising cone of air surrounds the zone of descent. This cone is sometimes described as a polar vortex. The cone begins at 300 hPa over the circumpolar trough and widens to take in the mid latitudes at the highest levels.

The upper troposphere/Lower stratosphere in the region of the circumpolar trough is characterised by intense mixing of air from diverse origins, the troposphere, the stratosphere and the mesosphere.

Between October and March the cone of ascending air below 50 hPa tightens like a hangman’s noose bringing air from the troposphere to the pole, creating an ozone hole, the falling away of surface pressure at this time of the year associated with generalised ascent over the Antarctic continent and so excluding the flow of air from the mesosphere that descends throughout winter.

That the circumpolar trough is due to differences in the ozone content of the upper air should be non-controversial.

THE DENSITY OPACITY OF THE GREEN BLOB

The circumpolar trough is an unremarkable aspect of the atmosphere in the view of UNIPCC. The significance of its presence is  unappreciated. This is not an unusual state of affairs in the annals of humanity. In fact,  ‘Climate Science’ has not leaned a lot about atmospheric dynamics since the time of the pioneer Bjerknes who published a work on the near surface characteristics of polar cyclones in 1922.

Bjerknes

It is realised, at least in meteorological circles, that a trigger is required for the formation of low pressure cells of rotating air  in the region of the circumpolar trough. That trigger  is an upper level trough, a mass of warmer, low density ozone rich air.

In  1922 it was not apparent that the most vigorous winds are located in the overlap between the stratosphere and the troposphere. Neither was it apparent that cold ozone deficient air  from both the mesosphere and the tropical troposphere are drawn towards the circumpolar front in the space shared by the upper troposphere and the lower stratosphere.

In fact the concept of a ‘stratosphere’ was pretty new in 1922. In many respects we have not moved on from that position despite the passage of 100 years. Indeed much that was known prior to the 1970’s has since been forgotten in parallel with the increasing concern that man and the environment in which he lives are  incompatible entities. Educators went off in socially responsible directions. A fabulous gravy train  was created for scientists and space agencies and all those who aspire to gain their daily bread by looking after the environment, painstakingly monitoring the activities of a an every increasing panoply  of despoilers, at one end mighty global corporations and at the other the humble cow that provides the milk for your morning cereal irresponsibly farting in  its field of green. Such is the work of the modern missionary.

The intensification of polar cyclones in winter, and the consequent lower surface pressure at that time of the year is due to the proliferation of ozone. Gordon Dobson observed in the 1920’s that, in high and mid latitudes low surface pressure identifies areas with high total column ozone. Dobson measured wind velocity and discovered that the strongest winds were not at the surface but in the region of the tropopause. The tropopause is kilometres lower when surface pressure is low than when surface pressure is high. This circumstance may be described as an upper level ‘trough’, a zone of  reduced air density that shows up in elevated geopotential height contours. Had Bjerknes apprehended the structure of the upper air we would not now be worrying about carbon dioxide in the atmosphere. We would be aware that the source of long term climate change, the source of decadal variations, the source of inter-annual variations and indeed our daily weather lies in variations in the ozone content of the stratosphere. We would  be at peace with the notion that our ‘rather too cool for comfort’ planet gains and loses energy according to change in the extent of its cloud cover.

There is so much to learn.

 

30 THE CLIMATE SHIFT OF 1976-1980

CHANGE IN THE STRATOSPHERE

The strength of the meridional flow (north-south and south-north) in mid to high latitudes depends upon the distribution of atmospheric mass between the poles and the mid latitudes. That in turn rests on the strength of polar cyclone activity between 50 and 70 degrees of latitude in both hemispheres. Because these cyclones lift ozone rich air to the top of the atmosphere and will do so according to density differences wrought by ozone between 300 hPa and 50 hPa it follows that 10 hPa temperature over the pole is a proxy for the strength of polar cyclone activity. Another good proxy is surface atmospheric pressure.  A third would be geopotential height, a fourth would be the strength of the zonal wind. In this chapter, for simplicity, we look at 10 hPa temperature over the poles.

We are looking at temperature at the top of the stratosphere as one product of the change in atmospheric processes.When this indicator changes we a seeing a change in the parameters of the climate system. We have not one climate system but many across a continuum. If you can’t chart the continuum or predict the course of the climate system within the continuum you can’t mathematically model it.

10hPa

We notice:

  • 10 hPa temperature varies more in winter and particularly so in the Arctic.
  • The Antarctic is slightly warmer in summer and about 20°C cooler in winter.
  • The discontinuity in Antarctic temperature in winter prior to and after 1976

This data suggests that the two poles are very different environments in terms of their atmospheric processes. If you live in the northern hemisphere welcome to the reality of what drives your weather in the very long term. Broadly speaking, the multi-decadal changes in the global atmosphere are driven from Antarctica while the inter-annual variations are a product of violent swings that occur in the Arctic winter. The long term evolution of northern hemisphere climate can not be understood without reference to Antarctic processes.  In polar regions, in winter, the air is highly mobile.Change in the temperature at 10 hPa indicates a change in the temperature profile due to change in atmospheric processes.

THE WINTER POLAR VORTEX

There is a lot of nonsense written about the polar vortex in standard issue climate science. What follows is a common sense interpretation. It describes the archetypal situation in the Antarctic, not the flim-flam phenomenon that manifests in the Arctic.

After 1948 the temperature of the stratosphere over both poles gradually increased in both summer and winter. The greatest increase incurred in winter indicating a change tied to atmospheric dynamics at the winter pole at a time when high surface pressure  results in the intake of cold, ozone deficient air from the mesosphere.

The inflow of mesospheric air is  associated with and strictly dependent on the seasonal advance in surface pressure. It is associated with the establishment of what is very confusingly called the ‘polar vortex’.

There is a cone or funnel shaped interface between two very different types of air in high latitudes in winter.  Think of a funnel with the tube like extension at its bottom removed. This funnel is wide at the top of the atmosphere (50 km in elevation) where it sits at about 40° of latitude and narrow at 200 hPa (10 km in elevation) where it lies at 60-70° of latitude. So, it has an annular or ring like shape about the pole but wider at the top than at the bottom. Ozone warmed low density air from the mid latitudes rises to the top of the atmosphere on the outside of this funnel and cold dense mesospheric air descends within ##the funnel. But there is no actual funnel. There is just an interface between two types of air. Mixing occurs at the bottom, up the sides and down through the top of the funnel. The depth of the funnel takes in a 40 kilometre  extent of the atmosphere and it involves the upper 20% of its mass including most of the part that contains ozone. The funnel tends to be discontinuous. Cold air escapes the interior on daily time scales. By means of the addition of mesospheric air we see change in the ozone content of the global ozonosphere that takes in the upper troposphere where marked differences in air density at 60-70° of latitude are responsible for the formation of polar cyclones. These cyclones move about the Earth in the same direction of rotation as the Earth itself but faster. Within the cyclone the air ascends. That ascent continues to the top of the atmosphere (outside of the funnel) and it sucks in air from the surface. In winter when this phenomenon is strongest, wind speed reaches 400 km per hour at the 200 hPa pressure level and accelerates further as it ascends to the top of the atmosphere. Below 200 hPa wind speed falls away towards the surface by about half. Wind speed is a good guide  to the location of extreme gradients in the density of the air.

The descent of mesospheric air within the funnel constitutes a sort of tongue. The extremely low temperature within the tongue is unrelated to surface conditions. It is due to the origin of the air in the mesosphere. An enhanced intake of mesospheric air  dilutes the ozone content of the stratosphere globally. However, to counteract this erosive force, ozone proliferates in the winter hemisphere due to reduced photolysis due to the absorption of UVB at low sun angles. Secondly, it may well be that ionisation due to cosmic ray activity can produce ozone over the poles. The balance of these competing activities determines whether the partial pressure of ozone increases or decreases. In springtime, as part of the final warming,  air from the troposphere is dragged across the polar cap destroying ozone (creating the ‘hole’) and enhancing the density gradient between ozone rich and ozone poor air driving enhanced polar cyclone activity and forcing surface pressure at 60-70° south to its annual minimum.

Ultraviolet radiation from the sun plays no part in this process because it happens during and following the polar night.

The most extreme temperature response to an increase in the ozone content of the atmosphere occurs over the polar cap at 10 hPa that is virtually the top of the atmosphere. This is due to the highly convective nature of the stratosphere in high latitudes, a concept that is unknown to ‘blinkered standard issue climate science’. At the top of the atmosphere ozone is perhaps being actively photolyised by short wave UVB. But it is also being dragged into the descending cone of mesospheric air that contains mesospheric species like N2O that destroy ozone.Temperature of the atmosphere in the Arctic

From the shape of the curves in the diagram above we can infer that mesospheric air descends to the 200 hPa pressure level. The curves represents the temperature of the air on a particular day. On a different set of days the level may be higher or lower. At the 200 hPa pressure level 80% of the mass of the atmosphere is below and 20% above.

CLIMATE CHANGE

Why did 10 hPa temperature increase after 1948 and particularly after 1976?  I suggest that extra-planetary influences slowed the east west super-rotation of the atmosphere about the pole reducing the intake of mesospheric air. Alternatively, an enhancement of cosmic ray activity resulted in ozone production that in itself, via polar cyclone enhancement is capable of lowering surface pressure in high altitudes. At any rate, surface pressure has fallen by about 10 hPa at the Antarctic pole over the last 70 years as the temperature of the stratosphere over the pole increased as shown in the graphs above.

Standard issue climate science conceives that warming in the stratosphere in high latitudes is generated by activity in the troposphere that propagates upwards as ‘planetary waves’. However, recent work by those who discuss the issue in terms of the ‘annular modes’ phenomenon identifies a top down mode of causation. It is irrational to conceive that shifts in atmospheric mass (decline in polar surface pressure and increase in mid latitude pressure) and upper air temperature that are other than simply oscillatory in nature can be a product of activity in the troposphere. There is nothing internal to the troposphere that could cause the temperature of the stratosphere to rise so precipitately between 1976 and 1980 and then to decline quite slowly as we see in the graphs above.

Neither is it plausible to suggest than an increase in ionising radiation from the sun could cause this phenomenon in the middle of winter. The only source of energy to warm the atmosphere in winter is infrared from the Earth via the activity of ozone.  This is another concept that is foreign to standard issue climate science that comprehensively fails to get to grips with the behaviour of the atmosphere in high latitudes where the global circulation of the air is determined. Climate science and its mathematical modellers are obsessed with the idea that it is the energy that is absorbed in the tropics that drives the system and that the system is self contained. However, it is plain that the atmosphere super rotates in the same direction as the Earth and the closer to the winter pole, and the higher the elevation, the faster it moves. As a rule of thumb in physical systems, the biggest impact is always seen closest to where the force is applied.

The concept of the Earth’s atmosphere as an electromagnetic medium super-rotating in winter in high latitudes and susceptible in its rate of rotation to the solar wind is anathema to climate science. The concept of cosmic rays ionising the air over the poles resulting in the production of ozone is not new to science in central and Soviet Europe. But it is very new to standard issue western climate science. That version of climate science is agenda driven and it does not see what it does not wish to see.

How did the build up of ozone in the stratosphere prior to an after 1976 affect surface temperature? We will now investigate that question systematically. We start in the Arctic, move to the mid latitudes of the northern hemisphere, the low latitudes of both hemispheres, the mid latitudes of the southern hemisphere and finally to the Antarctic continent.

We will see that the manner in which the climate has changed identifies the natural factors at work linking surface temperature change to the properties of the evolving nature of the atmosphere of the winter hemisphere. All data is  sourced here  (http://www.esrl.noaa.gov/psd/cgi-bin/data/timeseries/timeseries1.pl).

CHANGE AT THE SURFACE IN THE ARCTIC

60-90N

First off we examine the Arctic. The graph above indicates the average temperature across the year. This is the sort of data that holiday destinations provide to people thinking of going on vacation. There is a very good reason why the Arctic is virtually uninhabited by man and nobody goes there on vacation. Even if  the Arctic were a little warmer there would be no rush to populate it.

The axes of the graphs below are standardised to facilitate comparison. They trace the evolution of temperature according to the month of the year between 1948 and 2015. Each month is presented successively in an anticlockwise rotation starting with January and February and ending with November and December. We are interested only in the big picture, the differences in the evolution of surface temperature in each month of the year. The differences are enormous. Whether there is an error in the data that of the order of a fraction of a degree is of no interest whatsoever.

SAT 60-90N

In winter, between November and April there is enormous variability in surface temperature from one year to the next. This is not the case in summer.

After 1976 winters were warmer. Yes, the Arctic warmed in the dead of winter at a time when the sun does not shine and outgoing radiation reaches its seasonal minimum. Plainly this sort of warming is not due to back radiation from carbon dioxide that should warm in both summer and winter, and given the extra radiation in summer more warming would be expected in summer than in winter.

All months exhibit cooling prior to 1976. After 1976 all months exhibit warming but to varying degrees and with different patterns and slopes.  Temperature changes differently according to the month of the year as does the ozone content of the air in high latitudes and the direction of the surface winds. The temperature of the near surface air is determined according to its origin. The atmosphere above the icy surface in winter is warmer than the surface. Generalised warmth in winter is associated with an intake of warm moist air from the mid latitudes. Whether the air is flowing in or out of the Arctic is a function of local surface pressure in relation to that in the mid and low latitudes. The latter vary very little but polar pressure varies a lot. An inflow of warm air from the mid latitudes is the essence of the warm phase of the ‘Arctic Oscillation’. Napoleon, impulsively chose to invade  Russia during a cold phase of the Arctic Oscillation in in 1812. Hitler ran into another cold phase in his invasion of Russia in 1941. The cold phase in the mid latitudes is associated with a deficiency of ozone over the polar cap, low temperatures in the stratosphere, weak polar cyclone activity at 50-70° north,  high surface pressure over the pole and the jet stream looping southwards to bring icy conditions to the mid latitudes.

In the very long term, over hundreds of years,  the ozone content of the global stratosphere is modulated by the relatively steady state the southern polar vortex with enhanced variability in winter and spring. Along with the final warming in Antarctica there is ‘the hole’ that is part and parcel of the warming and has always been so. The increase in the temperature of the Arctic stratosphere in summer after 1976 is due to to influence of the Antarctic. Notice the static surface temperature in November, December, January and February since the turn of the century. It seems we had a ‘change point’ about the end of the century where the warming ceased.

The month of greatest temperature variability in the Arctic is January and February when the stratospheric vortex is at its height of activity but establishing either weakly or strongly from year to year.  In fact, the ozone charged nature of the northern stratosphere forces the most extreme variability in surface temperature in the months of January and February  all the way between the northern pole and 30° south latitude.

In standard issue climate science there is no explanation for this marked variability in the surface temperature in the middle of winter. The ‘amplification’ of temperature swings in the middle of winter is not simply a function of latitude. As we will see it extends across latitude bands and is tied to January and February even in the tropics. The ‘polar amplification’ proposition that purports to explain the enhanced temperature variability in high latitudes is implausible, first because the warming is confined to just the winter months and secondly because it is not confined to polar latitudes. This AGW story does not add up.

The anthropogenic mode of surface temperature increase in standard issue climate science should have no seasonality. In the real world we observe a natural mode of climate change driven from the poles in winter. It emanates from the stratosphere as it responds to external stimuli. It’s mode of operation involves shifts in atmospheric mass wrought by change in the ozone content of the air. There is a waxing and a waning of the zonal and meridional components in the movement of the air affecting the equator to pole temperature gradient. That is the true nature of climate change. This mode of climate change has nothing to do with the activities of man.

CHANGE IN THE MID LATITUDES OF THE NORTHERN HEMISPHERE

30-60N

The unfortunate thing about the mid latitudes in the northern hemisphere is the severe  winters. The nice thing about the change in the climate that has occurred since 1976 is that, following a period of cooling up to 1976, winter temperatures became less severe while summer temperatures remained virtually unchanged. But all good things come to an end and since the turn of the century winter temperatures are no longer increasing.

The scale on these graphs is the same as used for the Arctic with 8°C on the vertical axis. We needed that much to cater for change in the Arctic. Notice the much reduced variability at 30-60° north by comparison with the Arctic.

SAT 30-60N

Again, we see that winter is the season of change. Again we see cooling prior to 1976.

The silly thing about the calculation of the global temperature statistic is that it can never be an index of human welfare or the suitability of the planet for human habitation. The bulk of the Earths population lives in the northern hemisphere and the truth of the matter is that winter is inconveniently cold. The warming that occurred has been wholly beneficial. Why would the proponents of standard issue climate science complain about that? In truth, these people live in a world of their own where apples and oranges are aggregated as if they grew on the same tree and tasted exactly the same.

CLIMATE CHANGE IN THE NEAR EQUATORIAL LATITUDES OF THE NORTHERN HEMISPHERE

o-30° n

The northern tropics are a truly favourable zone for agriculture with temperature hovering about the 25°C optimum for photosynthesis across the entire year.

SAT 0-30N

Temperature variability is greatest in January and February. There has been little change in these months over the last seventy years except for an uptick of about half a degree from the mid 1990’s probably reflecting the process of warming in higher latitudes. The temperature of the tropics very much depends on the intake of cold waters on the eastern sides of the ocean basins. The ocean currents respond to wind and surface pressure. Surface pressure depends on the ozone content of the upper half of the atmospheric column. A step increase in the temperature of the tropics occurred after 1976 in January and February. That step change is reversible.

CHANGE BETWEEN THE EQUATOR AND 30° SOUTH LATITUDE

0-30S

SAT 0-30S

Between the equator and 30° south air temperature from October to March moved to a plateau at a slightly elevated level in relation to the gradually warming regime that existed prior to 1976. Enhanced variability is driven primarily from the Arctic between November and April. This continues the theme that prevails across the northern hemisphere.

CHANGE IN THE MID LATITUDES OF THE SOUTHERN HEMSIPHERE

30-60S

The temperature of the mid latitudes of the southern hemisphere reflects the the dominance of sea over land in terms of surface area. Winter temperatures are far less extreme than in the northern hemisphere but cool enough to strongly inhibit photosynthesis in winter. Summer temperatures are  about 10°C short of the optimum for photosynthesis. Plants are at the base of the food chain. Humanity depends upon plant growth for its sustenance.These latitudes are a tough gig for humanity especially on the west coasts and continental interiors that tend to be very dry.In inland areas winters are distinctly chilly. This latitude band is a bit cool for both  personal comfort and plant productivity.

SAT 30-60S

Surface temperature at 30-60° south is much less variable than in the mid altitudes of the northern hemisphere.  There is  a slight tendency for variability to be stronger in July and August. Some months show warming after 1976 and other months no warming.

The years prior to 1976 showed a relatively steep increase in surface temperature but in most months the rate of increase falls away after 1976.

CHANGE IN ANTARCTICA

60-90S

The Antarctic is unremittingly cold all year round. No plants can grow. This is a place of scientific interest only. Hardy souls come here in search of adventure. Many pay with their lives. The interest in the climate of Antarctica resides in whether it will ever warm sufficiently to release the ice that depresses the continent into the Earths crust. The area of solid ice that forms about the margins of the continent in winter is as large as the continent itself. Antarctica has the same area as Australia. Ice mass has been increasing in spring and summer as Arctic ice has been retreating. While the temperature of the air remains below zero all year round this situation is unlikely to change very much.

Surface Air 60-90S

Temperature variability is extreme all year round but particularly so in winter from March through to November. Between November and February when the ice mass might be under threat if the temperature of the air were to rise above freezing point, the continent has cooled continuously over the period of record. In autumn, winter and spring the air warmed strongly after 1976. Strongest warming occurred at the coolest time of the year in July and August. A warming of the air by 2°C when that air is 30°C below zero in a location where nobody lives is not a threat to the existence of humanity. It is not the result of selfish consumption by the few scientists that keep their lonely vigil at the expense of succeeding generations. Why would we think it appropriate to include statistics for Antarctica in an index that  is supposed to relate the the welfare of succeeding generations unless the intent were to deceive?

THE WARMING MECHANISM

Warming in high latitudes in winter is the product of a process set in train by an increase in the ozone content of the air. An increase in the ozone content of the air can result from a reduced intake of mesospheric air or an increase in cosmic ray ionisation. The former depends on the rate of super-rotation of the atmosphere that is dependent on the electromagnetic character of the near Earth environment as it reacts to the solar wind and the radiant output of the sun. Once set in train an increase in the ozone content of the air enhances polar cyclone activity that shifts atmospheric mass to the mid latitudes with knock on effects on the polar vortex via the loss of atmospheric pressure over the polar cap.

The impacts of the increase in the ozone content of the air are multiple. The westerlies blow harder in winter bringing warm air from tropical latitudes to high latitudes.This changes the equator to pole temperature gradient. It is one of two mechanisms involved in high latitude warming. The second involves a loss of cloud cover in the mid latitudes where the westerlies originate. As surface pressure increases in the mid latitudes the area occupied by  high pressure  cells increases. The increase in the ozone content of the air gives rise to warming of the atmospheric column, increased geopotential height and surface warming. The relationship between geopotential height and surface temperature is observed and acknowledged. The result of an increase in the ozone content of the air is an increase in geopotential height.

THE ‘DANGERS’ OF WARMING

Warming in cold climates in the depth of winter should not be a matter for concern but congratulation. It beneficially extends the growing season on a planet that tends to be unfavourably cool in winter. This good news is turned into bad news when incorporated in an average  for the  temperature of the globe as a whole. That perceived increase then becomes as excuse for a social agenda involving widespread interference in markets to favour producers of particular forms of energy. These forms of energy are only available intermittently.   These intermittent systems must be backed up with plants that are capable of running continuously. All plants are most efficient when run at close to capacity. All plants are more expensive to run when ramped up and down or stopped altogether to cater for the input of energy from variable sources like wind and solar. This idiocy comes with a big price tag when we factor in the capital costs  to enhance energy efficiency in buildings. We pay for energy three or four times over when all the adaptations are factored in.

There is no virtue in a precautionary principle  unless we are sure that the works of man are changing the climate system in such a way as to promote warming  in summer. Plainly other forces are involved.

Here are some polite reminders:

  • The pattern of temperature change that is observed is very different to that expected from back radiation by uniformly distributed absorbers of long wave radiation.
  • For many people (activists) this notion of anthropogenic climate change is a matter not of knowledge and observation but of belief. Actions based on belief are non adaptive. These actions can be very costly.
  • The globe has not warmed for sixteen or more years while the carbon dioxide content of the atmosphere has continued to increase.
  • Carbon dioxide is plant food and has beneficial effects for plant life and photosynthesising organisms in the sea. These forms of life are at the base of the food chain.
  • The use of a global temperature as a metric of human welfare is insupportable.
  • Science that is funded out of the public purse always becomes a servant to those in control of the public purse.
  • The poor people of the world require the least expensive sources of energy and it is selfish and inhumane to deny them supply.

The green agenda on ‘climate change’ is not humane. It   is an agenda for social change involving impoverishment and deprivation. We need a new breed of politician who can take advantage of the support that is waiting in the wings for a rallying cry. The bulk of humanity is waiting in a state of increasing frustration and dismay. How many ratbags will we have to put up while waiting for a person with a modicum of common sense to turn up?

 

 

 

 

 

 

 

13 THE PROCESSES BEHIND FLUX IN CLOUD COVER

THE DISTRIBUTION OF CLOUD

The map below has been edited by the author, adding red lines drawn freehand, to outline the darker areas over the oceans where cloud is, on average, less dense. The land tends to be relatively cloud free by comparison with the sea and shows up in tones of blue.In the mid latitudes there is a band of relatively cloud free air over the oceans, a ‘clear sky window’ if you will.

distribution of cloud global

I am indebted to NASA for the photo above and the description of global cloud cover below. The original can be located at http://earthobservatory.nasa.gov/IOTD/view.php?id=85843&src=eoa-iotd

Over to NASA.

Decades of satellite observations and astronaut photographs show that clouds dominate space-based views of Earth. One study based on nearly a decade of satellite data estimated that about 67 percent of Earth’s surface is typically covered by clouds. This is especially the case over the oceans, where other research shows less than 10 percent of the sky is completely clear of clouds at any one time. Over land, 30 percent of skies are completely cloud free.
Earth’s cloudy nature is unmistakable in this global cloud fraction map, based on data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite. While MODIS collects enough data to make a new global map of cloudiness every day, this version of the map shows an average of all of the satellite’s cloud observations between July 2002 and April 2015. Colors range from dark blue (no clouds) to light blue (some clouds) to white (frequent clouds).
There are three broad bands where Earth’s skies are most likely to be cloudy: a narrow strip near the equator and two wider strips in the mid-latitudes. The band near the equator is a function of the large scale circulation patterns—or Hadley cells—present in the tropics. Hadley cells are defined by cool air sinking near the 30 degree latitude line north and south of the equator and warm air rising near the equator where winds from separate Hadley cells converge. As warm, moist air converges at lower altitudes near the equator, it rises and cools and therefore can hold less moisture. This causes water vapor to condense into cloud particles and produces a dependable band of thunderstorms in an area known as the Inter Tropical Convergence Zone (ITCZ).
Clouds also tend to form in abundance in the middle latitudes 60 degrees north and south of the equator. This is where the edges of polar and mid-latitude (or Ferrel) circulation cells collide and push air upward, fueling the formation of the large-scale frontal systems that dominate weather patterns in the mid-latitudes. While clouds tend to form where air rises as part of atmospheric circulation patterns, descending air inhibits cloud formation. Since air descends between about 15 and 30 degrees north and south of the equator, clouds are rare and deserts are common at this latitude.Cloud Africa

Ocean currents govern the second pattern visible in the cloudiness map: the tendency for clouds to form off the west coasts of continents. This pattern is particularly clear off of South America, Africa, and North America. It occurs because the surface water of oceans gets pushed west away from the western edge of continents because of the direction Earth spins on its axis.
In a process called upwelling, cooler water from deep in the ocean rises to replace the surface water. Upwelling creates a layer of cool water at the surface, which chills the air immediately above the water. As this moist, marine air cools, water vapor condenses into water droplets, and low clouds form. These lumpy, sheet-like clouds are called marine stratocumulus, the most common cloud type in the world by area. Stratocumulus clouds typically cover about one fifth of Earth’s surface.
In some of the less cloudy parts of the world, the influence of other physical processes are visible. For instance, the shape of the landscape can influence where clouds form. Mountain ranges force air currents upward, so rains tend to form on the windward (wind-facing) slopes of the mountain ranges. By the time the air has moved over the top of a range, there is little moisture left. This produces deserts on the lee side of mountains. Examples of deserts caused by rain shadows that are visible in the map above are the Tibetan Plateau (north of the Himalayan Mountains) and Death Valley (east of the Sierra Nevada Range in California). A rain shadow caused by the Andes Mountains contributes to the dryness of the coastal Atacama Desert in South America as well, but several other factors relating to ocean currents and circulation patterns are important.
Note because the map is simply an average of all of the available cloud observations from Aqua, it does not illustrate daily or seasonal variations in the distribution of clouds. Nor does the map offer insight into the altitude of clouds or the presence or absence of multiple layers of clouds (though such datasets are available from MODIS and other NASA sensors). Instead it simply offers a top-down view that shows where MODIS sees clouds versus clear sky.
Since the reflectivity of the underlying surface can affect how sensitive the MODIS is to clouds, slightly different techniques are used to detect clouds over the ocean, coasts, deserts, and vegetated land surfaces. This can affect cloud detection accuracy in different environments. For instance, the MODIS is better at detecting clouds over the dark surfaces of oceans and forests, than the bright surfaces of ice. Likewise thin cirrus clouds are more difficult for the sensor to detect than optically thick cumulus clouds.

THE VERTICAL DISTRIBUTION OF CLOUD

Cloud levelsAbout half of the atmosphere is below 5 km in elevation and half above. Cloud is present in both the upper and the lower half of the atmospheric column.  In near equatorial latitudes very high cloud extends into the stratosphere. The jet streams at 8-15 km in elevation were first identified by tracking the movement of cirrus clouds.

REALITY CHECK: A QUESTION OF SCALE

Landscape from space

The photo above was taken from the International space station at an altitude of 431 kilometres above the surface of the Earth. A red circle is marked in the sea off Christchurch, New Zealand.

Gravity holds the Earth’s atmosphere in a close embrace.  Really close. As seen in the photo the atmosphere refracts blue light like a prism on the margins of the globe. The red line at the margin, in its thickness, represents a depth of about 27 km. Some 98% of the atmosphere lies within 27 km of the surface of the planet.

Project Loon, a venture by Google, employs balloons that travel at an elevation of 20 km finding sufficient variation in the winds to enable these balloons to circumnavigate the globe in 10 days and land at preordained locations.

In 1920 Gordon Dobson registered his interest in the winds of the stratosphere using theodolites to track sounding balloons. Strong winds in the stratosphere led Dobson to the measurement of ozone as the source of density variations that could explain these winds.

The stratosphere is a vigorous medium. The tongue of mesospheric air inside the polar vortex penetrates to the 250 hPa pressure level at 8 km of elevation and tracers of mesospheric air from both the mesosphere and the near surface atmosphere can be observed mixed with ozone throughout the stratosphere. NOx is a potent source of ozone depletion  changing surface climate because of its effect on ozone and surface pressure.

In 1956 when a Dobson spectrometer was utilized to measure total column ozone for the first time at the British Antarctic base at Halley Bay, the Antarctic  ‘ozone hole’ was discovered, amazing Dobson who was familiar with the pattern of ozone variation in the Arctic and therefore completely outside his field of experience. This ‘hole’ was later seized upon by environmentalists  as an instance of man’s capacity to abuse the planet.In truth, the 1956 observation indicates that the ozone hole existed prior to the widespread use of refrigerants and is a product of the atmospheric circulation in high latitudes. The ozone hole narrative, a pillar of today’s climate science’ stands in the way of a true appreciation of atmospheric processes.

REALITY CHECK: ATMOSPHERIC HEATING DUE TO THE PRESENCE OF OZONE ORDERS THE GENERAL CIRCULATION OF THE WINDS

The atmosphere is heated by contact with warm surfaces, secondly at cloud level by the release of the latent heat of condensation (notably tropical cyclones) and thirdly in the  as ozone absorbs radiation from the Earth itself. Low pressure systems at latitudes between 30° and 70° of latitude have their origin in ozone heating. These low pressure cells set up a rising circulation that engages the totality of the atmospheric column. In mid to high latitudes ozone is the primary driver of lapse rates. In high latitudes ozone is ubiquitous throughout the atmospheric column. Low pressure systems (cold core polar cyclones) form over the oceans. In the northern hemisphere winter the Pacific sector in overwhelmingly dominant. Once initiated in the stratosphere, a low pressure system lifts ozone into the ascending circulation accounting for the relatively static  location for elevated total column ozone and markedly lower surface pressure over the north Pacific in late autumn/ winter. In the southern hemisphere polar cyclones surround the Antarctic continent with a tendency to be most intense south of New Zealand.

A high pressure system in the mid latitudes can span 3,000 kilometres in its horizontal extent and manifestly involves the circulation of the air in both the troposphere and the stratosphere. As surface pressure increases so does geopotential height, indicating ozone heating. In chapter 3 we noted that the surface warms as geopotential height increases as a simple result of the expansion of the ‘clear sky window’.

At the equator convective clouds push wet air upwards to 15 km in elevation and moist air rich in tropospheric NOx invades the stratosphere, the prime reason for the relatively low levels of total column ozone in low latitudes.It is for this reason that high pressure cells are much denser aloft than low pressure cells, compensating for the warmth and lack of density near the surface to the point that surface atmospheric pressure is enhanced.

The novelty of this view of the atmosphere resides in the recognition of ozone as the source of surface pressure variation. It is in the mid to high latitudes of the winter hemisphere that surface pressure varies most aggressively. Secondly the novelty resides in the view of the stratosphere as a vigorous deterministic medium. Thirdly, it is novel in the notion that the entire atmospheric column moves ‘wholus bolus’ with scant regard to conceptual notions relating to a vigorous ‘troposphere’ and a static, quiescent stratosphere.

As Gordon Dobson observed back in the thirties , total column ozone maps surface pressure, the ozone content of the upper air determining the character of the winds at the surface. In fact, this view of the atmosphere is not so new. It was prevalent in the 1950’s when RM Goody, a colleague of Dobsons at Cambridge wrote:’The idea is gaining ground that, from the dynamical standpoint, the stratosphere and the troposphere should be treated as a single entity’. RM Goody, The Physics of the Stratosphere 1954. p. 125.

Our imaginations baulk at the idea that the atmosphere is thin and vertically interactive. The mental constructs that we have been taught, involving a supposedly quiescent stratosphere, lead us astray, especially when it comes to appreciating atmospheric dynamics in high latitudes.   High latitudes are so cold that few of us venture there. A very few hardy souls actually reside there. One thinks of the monkeys who take advantage of hydrothermal energy in northern Japan, the hardy Eskimos of North America and the wildlife that visits Antarctica for the ‘season’.

Palpably, change in what we refer to as ‘the stratosphere’ is the source of variations in surface pressure on daily, weekly, decadal and centennial  time scales. The stratosphere has a geography that is as fascinating as that at the surface of the planet, in fact, given its importance in determining daily weather it should be more so. The search for the origins of natural climate variation takes us inevitably to the stratosphere. In order to appreciate the power in the processes involved we need to maintain a sense of scale. This helps us to understand the coming and going of cloud, the most important determinant of surface temperature.

NATURAL CYCLES IN CLOUD AND ALBEDO

In the main cloud is made up of highly reflective crystals of ice because within a couple of kilometres of the surface, in temperature latitudes, temperature is at freezing point. Less cloud forms over land. The mid latitude high pressure cells are relatively cloud free. These clear sky windows expand and contract on a seasonal basis being more expansive in the winter hemisphere driven by heating in the summer hemisphere and a seasonal movement in atmospheric mass from the high latitudes of the winter hemisphere. It is the accumulation of ozone in the winter hemisphere that drives inter-annual climate variations. It is the ozone narrative of the environmental movement that stands in the way of an appreciation of the source of natural climate variation.

ATMOSPHERIC HISTORY

The phenomenon of mass transfer associated with ozone heating in high latitudes in winter has long been described as the Arctic or the Antarctic Oscillation, or on a regional scale as the North Atlantic Oscillation. Only recently has it come to be called the ‘Annular (ring like) Modes of inter-annual and inter-decadal climate variation’ that affects both hemispheres primarily in winter.

There is a very long period of variation in the Antarctic Oscillation that is undocumented. It is inter-centennial in its time scale and we don’t have the data to represent it. As of 2015 reliable data for the atmosphere goes back just 70 years. Of that period the first thirty one years has been documented by a process of interpolation based on sketchy data from the pre-satellite age and this especially applies to the southern hemisphere.

We have excellent well standardised data from 1979 from a few well maintained and closely scrutinised instruments that travel around the globe on a twice daily schedule, an immense improvement on the past where many instruments, poorly standardised, poorly located, subject to re-siting and the vagaries of interpretation by multitudes of observers, but during working hours only, who could nevertheless cover just a fraction of the whole with spot rather than continuous observations. Observations were recorded on fragile pieces of paper. Data from the pre satellite age is ……well, despite all the effort, very hard to locate, full of gaps, in the case of temperature much affected by the choice of housing for the instrument and change in the local built and natural environment, therefore of questionable utility and much subject to ‘reinterpretation’. But, there is one parameter in the climate record, atmospheric pressure, that is entirely unaffected by the choice of location for the instrument. The instrument we call a ‘barometer’ that works as well on a rolling ship as on land, in the sun or in the shade. There is therefore no reason for re-interpretation  of the surface pressure record.

Here is the kicker: The surface pressure record indicates that it is in high southern latitudes that surface pressure varies most widely. It also indicates that there has been a loss of atmospheric pressure over Antarctica of about 15 hPa over the last 70 years.

Those who are employed to predict the weather diligently map surface pressure variations and they see the origin of surface pressure variation here: http://www.cpc.ncep.noaa.gov/products/stratosphere/strat_a_f/

Their focus is on the stratosphere.

VEGETATION AS WATER PUMP : THE CLOUD ENHANCER OVER LAND

Observe the dense cloud cover over the Congo in the second photo above,and to a lesser extent over East Africa by contrast with cloud cover over the Sahara and the Kalahari Desert in Southern Africa and the very cold waters coursing northwards from Cape Town.

It takes particular circumstances to produce cloud over land in summer . What is required is a cover of actively transpiring vegetation that launches water vapour into the atmosphere. Nowhere is this more obvious than the zones that support tropical rain forest. As a general rule, if we desire cooler surface temperatures and more precipitation we should plant trees and avoid clearing high density vegetation unless it is to be replaced by a higher density of vegetation. It is commonly observed in the more arid portions of Australia that cloud forms over native vegetation rather than land cleared for pasture or grain growing.

From a plants point of view carbon dioxide is a scarce resource that is available at near starvation levels. When more carbon dioxide is available plants that are at the dry end of the spectrum in terms of available water respond magnificently. Australian CSIRO scientist Randall Donohue published the image below that documents the re-vegetation response to carbon dioxide . Apparently, the drier the environment the better the foliage gain from increases in CO2. This gain documented in the map has accrued between 1982 and 2010. Source: http://www.csiro.au/en/News/News-releases/2013/Deserts-greening-from-rising-CO2

Greening

Urbanization has contributed to the warming of the planet as societies have cleared natural vegetation, industrialized, laid down roads to facilitate the  movement of people and goods on a massive scale, provided lighting at night, expanded the suburbs on the margins of cities and built glass covered multi story buildings that trap heat and require air conditioning. Man has harnessed the power of fossil fuels, falling water, the sun and the wind to drive engines to perform work and to cool and warm the structures he creates. All this results in localized heating but the area involved is tiny. Look for the night lights as you travel by air and observe their sparsity. Trust to enhanced convection to deal with the temperature increase. Remember that much of the Earth is undesirably cool from the point of view of plant productivity.

All life depends upon the productivity of plants and much of the earth is arid. It is in these areas that enhanced availability of carbon dioxide gives the greatest response. Remember that there is nothing like native vegetation for producing clouds and cooling the surface. With the enhancement of carbon dioxide in the atmosphere the earth is entering a golden age of enhanced plant productivity.

Along with enhanced leaf area in dry areas we get greater evaporation, greater cloud cover and enhanced rainfall.Irrigation of dry areas enhances this process actively changing the climate for the better.

CLOUD OVER THE SEA: ENERGY GOING INTO THE BATTERY.

The two maps  below reflect the distribution of cloud and surface atmospheric pressure. Large areas over the oceans experience high surface pressure, sparse cloud cover, low precipitation and relatively high evaporation.  Except for a band of high precipitation extending south easterly from New Guinea almost the entire zone between the equator and 30° south is ‘clear sky window’. The sea traps energy by virtue of its transparency to as much as 300 metres in depth.  It yields that energy slowly, transferring it to colder regions. Operationally, if one were to increase the areas that are coloured brown you increase the energy cycling within the ocean and this raises the surface temperature of the globe. The flux in the cloud free areas involved is driven by the annular modes phenomenon, a response to ozone in the stratosphere.

Observe the symmetry in the two maps below. The distribution of evaporation less precipitation maps surface pressure and the distribution of cloud.

Evaporation minus precipitationSource: http://ds.data.jma.go.jp/gmd/jra/jra25_atlas/eng/indexe_surface13.htm

distribution of cloud global

SEASONAL WARMING OF THE GLOBE

Consider the annual average of global air temperature as against top of atmosphere global outgoing radiation as documented on the left and right axis of the figure immediately below. The placement of the curves in the vertical dimension is arbitrary.I bring them into close association only to assess variation in their evolution according to the time of the year.

A system that is neither heating or cooling needs to be in balance across the year. From September through to January outgoing long wave radiation lags the temperature curve indicating energy entering the system in excess of that leaving. This seasonal increase in energy acquisition relates to the annular mode phenomenon. It is at this time of the year that the southern and the northern annular modes most drive change in the distribution of atmospheric mass opening up the ‘clear sky window’. In effect the ocean absorbs energy without immediately re-transmitting it.

OLR and Air T

In a system where surface temperature is static then outgoing long wave measured at the top of the atmosphere should also be static. Below is the data for both air temperature in the 0-30° latitude band (where the clear sky window is most extensive) and whole of Earth outgoing long wave radiation. Since 1998 both are essentially static despite the steep increase prior to that date. In the short term air temperature in the near tropical ocean is a function of the changing volumes of cold water introduced into the tropics due to flux in the planetary winds but in the long term these two series must vary together.

OLR and progress of T

The stabilization of  long wave radiation after 1998 at about 230 watts per square metre indicates a system that is no longer gaining energy. This, despite the vagaries of change in surface temperature, is the plain reality.

In the relatively cloud free zone between the equator and 30° of latitude  we would expect temperature to increase as surface pressure increases due to an expansion of the ‘clear sky window’. The diagram below indicates a relationship but it is plainly not direct, at least in the short term and we see that the increase in temperature frequently precedes the increase in surface pressure.Why is this so? There are several reasons:

  1. Ocean currents driven by the planetary winds  bring cold water from higher latitudes into the tropics displacing warmer water, the primary mode of short term variation in the temperature of the waters in the tropics.This acts to cool the tropics as surface pressure increases in mid latitudes opening the clear sky window that warms the extra tropical waters.
  2. A  strong warming dynamic in the South Eastern Pacific about the continent of South America precedes the temperature increase in the tropics by as much as a year. The flux in surface pressure across the Pacific is much stronger than across other oceans or indeed the global tropics taken as a whole.
  3. The Arctic Oscillation Index is currently in decline indicating an increase in surface pressure in the Arctic, a loss of surface pressure in the mid latitudes and a falling away of the strength of the winds that drive the circulation of the waters in the northern hemisphere. So, since 1998, El Nino bears the stamp of Arctic processes in the way that it manifests.

Temperature and pressure

SOME OBSERVATIONS IN RELATION TO THE MANNER IN WHICH THE TEMPERATURE OF THE GLOBE CHANGES NATURALLY

  1. Earth is a very watery, very cloudy planet much subject to temperature swings according to the extent and density of cloud cover.
  2. Over land, 30 percent of skies are completely cloud free but the land is incapable of transferring energy to depth or retaining it and transfers that energy to the atmosphere, mostly within the 24 hour cycle, in the process reducing cloud cover in the middle of the day and allowing it to increase in the late afternoon. The annual cycle in global temperature involves a maximum  in northern summer as the enormous land masses of the northern hemisphere heat the atmosphere and cloud falls away. Solar radiation is 6% less intense in northern summer due to orbital considerations. However a falling away of cloud cover at this time of the year allows more energy to reach the surface producing a temperature maximum for the globe as a whole in mid year.
  3. The oceans are transparent to solar radiation and consequently store energy. Over the oceans, less than 10 percent of the sky is completely clear of clouds at any one time. This limits the uptake of energy by the oceans delaying and transferring the surface temperature response to a reduction in cloud cover. In clear waters light penetrates to a depth of 300 metres.
  4. Two thirds of the global oceans are in the southern hemisphere.
  5. Globally, cloud cover is greatest in southern summer when the Earth is closest to the sun and solar radiation is 6% stronger due to orbital considerations. This is when the globe as a whole is coolest and most susceptible to warming via loss of cloud cover. The evidence is that between September and January, the Earth emits less energy than it receives. At this time polar processes drive change in atmospheric ozone levels from year to year and across the decades.
  6. The expansion and contraction of the Hadley cell in the southern hemisphere affects the distribution and extent of cloud across the southern hemisphere. On an inter-decadal scale an expansion of the Hadley cell as surface pressure rises in the mid latitudes exposes more of the southern oceans to solar radiation. This is palpably the most important dynamic driving global surface temperature in the long term. Neither this nor the impact of ozone in driving  shifts in atmospheric mass that lies behind the expansion of the Hadley cell are recognized in the works of the UNIPCC.
  7. The Southern and the Northern Annular Modes govern the extent of the relatively cloud free high pressure cells that form over the ocean The NAM is influential in determining the swings in surface temperature between  30° south latitude and the northern pole with regular repeating variations that reach a maximum in January and February. The SAM cycles on an inter-centennial time scale providing the long swings upon which the NAM creates the surface chop.It produces the largest temperature swings that are seen in June and July south of 30° south. Although apparently lacking potency by comparison with the NAM on a centennial scale the SAM is much more variable than the NAM and drives the whole.
  8. The origin and cause of the NAM and the SAM is unknown to climate science because the role of ozone in giving rise to polar cyclones that determine the flux in surface pressure in high southern latitudes is as yet unrecognised. The most important source of convection, the jet streams and the flux in the weather on all time scales is still a mystery to climate science even though the importance of the stratosphere in determining the flux in surface pressure was realised a hundred years ago. The source of the natural variability that vacillates on centennial time scales is not a question that exercises the minds of climate scientists. Climate science of the IPCC variety appears to be blissfully unaware of the marked loss of mass in high southern latitudes over the period of record.
  9. In Southern summer the concentration of ozone in the global stratosphere is controlled by Arctic stratospheric processes. This is expressed as a dynamic fluctuation in surface temperature in the 0-30°south latitude band, and across the entire northern hemisphere, in the months of January and February. This is the signature written in the temperature record that identifies the source of surface temperature change.
  10. Surface temperature anomalies are associated with anomalous increases in geopotential height that manifest from the surface through to the stratosphere. This surface temperature increase is related to cloud cover variation due to ozone heating. We know this is the case because the temperature of the upper air varies more strongly than the air at the surface. It is not possible for change at the surface to produce an amplified change at elevation. Dissipation rather than gain is the rule.
  11. As a surface dweller humans are well aware that temperature varies according to the origin of the air that meets us when we step outdoors in the morning. Change in the planetary winds changes the origin of surface winds and is conjunction with change in surface pressure, geopotential height and upper atmosphere ozone. The chain of causation is top down. Climate science as presently  promulgated is unaware of this dynamic. It is in a sad state of constipation due to an ideological insistence that change must be bottom up in origin. Climate science is unaware of the basic dynamic governing the planetary winds and surface temperature.
  12. Recognition of ozone as the driver of the annular modes via the marked increase in ozone partial pressure outside the margins of the tongue of mesospheric air that descends from the stratosphere would interfere with the favoured ozone hole narrative of environmentalists. The Montreal Protocol for the phasing out of certain chemicals used as propellants and refrigerants,  a high water mark for the environmental movement  would then be seen as resulting from a mistake in the interpretation of atmospheric processes. There is too much at stake for the environmental movement to revise its opinion on this matter.
  13. Given the active circulation in the global oceans the temperature of tropical waters is probably a reasonable indicator of the amount of energy stored in the system, at least on decadal scales that average for the flux in the planetary winds and the resulting ENSO phenomenon. The rate of inflow of cold waters into the tropics via the currents that flow equator-wards along the western margins of the continents is highly variable. It is driven by the planetary winds that vary in velocity with changes in surface pressure. It is commonly observed that tropical waters cool as the trade winds strengthen. Increased velocity in the trade winds and the westerlies is due to the transfer or atmospheric mass from high to mid latitudes as ozone levels increase at the pole driving enhanced vorticity in cyclones of ascending air and the jet stream aloft. This is in turn associated with increased geopotential heights in the mid latitudes reduced cloud cover and surface warming. So, we have a conjunction of mid latitude warming due to reduced cloud cover and cooling in the tropics as increased wind velocity drives more cold water into the tropical circulation displacing warm waters into higher latitudes to raise surface temperature in those higher latitudes as it falls in equatorial latitudes. The action that really matters, in terms of energy acquisition, happens outside the narrow latitudes where ENSO is measured and in the southern hemisphere in particular.For most observers this is mind boggling.Those who look for the origin of the El Nino phenomenon are looking in the wrong place if they confine their attention to the narrow latitude bands where surface temperature varies most strongly.
  14. By virtue of the area involved, the tropics as a whole makes a large but somewhat misleading contribution to the global temperature statistic. The flux in temperature in the tropics is large in amplitude but it is driven according to a longer time schedule, years rather than months in accord with change in the planetary winds. The flux in temperature in the mid to high latitudes is vigorous, particularly so in the northern hemisphere and peaks with monotonous regularity in particular months of the year under the influence of polar atmospheric processes.
  15. Change in sea surface temperature on inter-decadal time scales is signalled in the months of January and February and July through to October under the influence of the Arctic and the Antarctic respectively. The change in surface temperature in other months is muted by comparison and in some instances opposite in sign to that in the months that show peak variation. There is no apparent groundswell of temperature increase across all months in accord with the increase in the atmospheres burden of well mixed long wave absorbers that would indicate a greenhouse effect at work.
  16. Taken together, these observations support the contention that cloud cover is the prime source of variation in the amount of solar energy stored in the earth system.
  17. The atmospheric column over Antarctica is the source of climate variation globally. Change in geopotential height over Antarctica precedes change elsewhere frequently imposing mirror image responses in the Arctic.
  18. Extremes in weather in the tropics, such as tropical cyclones and cyclones of polar origin are driven by entirely different modes of causation, the former by warm seas, moist air and precipitation the latter by change in the ozone content of the air aloft. We do not have to have recourse the grab bag called ‘climate change’ that implies anthropogenic modes of causation to explain extremes in climate and weather. We should be more discerning, more observational and more logical, in our thought processes. Currently those who pretend to have all the answers are behaving like primitives.

 

12 VARIATION IN ENERGY INPUT DUE TO CLOUD COVER

Ninety nine percent of the atmosphere lies within the ambit of a vigorous day’s walk, just 30 kilometres!

The atmosphere efficiently conveys heat to space via convection (transport) and radiation.  This is apparent in the 24 hour cycle of temperature as a point on the Earth’s surface alternately faces the sun and enters the night zone and the more so in inland locations where the daily range of temperature is accordingly much greater.We call this increase in the daily range of temperature the ‘continental’ effect.

In the northern hemisphere where there is a relative abundance of land the seasonal extremes are wider we have another example of the ‘continental effect’. The strong maximum in outgoing radiation in summer should promote summer warming if the atmosphere were subject to a ‘greenhouse effect’. But, consult the graph below and see that in the mid latitudes of the northern hemisphere we find that the temperature has increased mainly in spring and autumn. In high latitudes the increase in temperature has been in winter when outgoing radiation plunges to a  minimum.

Change in T in NH according to month of the year

Under an imaginary greenhouse regime the atmosphere becomes an impediment to heat transfer and we should see an increase in temperature in all seasons and in all locations just as the ocean limits the variation in temperature of proximate locations. But in fact we observe that the temperature increase that has occurred is variable according to the month of the year. This temperature increase does not tally with the mechanism that is proposed by the United Nations International Panel on Climate Change that was set up to examines man’s influence on the climate of the globe.

In cold conditions humans make sure that the air close to their skin is contained and unable to move. But, the Earth’s atmosphere is not confined in this way. Consequently it acts as a river for energy transfer from the surface to space. As a river it is perhaps the most vigorous on the planet. The ‘supposed greenhouse effect’ is no impediment to this process. Common sense dictates that a static atmosphere is required if the rate of loss of energy is to be curtailed and back radiation is to return energy to the surface via a so-called greenhouse effect. The atmosphere is anything but static. We insulate to stop the air moving. The atmosphere is air.

Plainly we must look to other modes of causation to explain the temperature increase that has been observed.

NATURAL VARIATION IN ENERGY INPUT AS MEDIATED BY CLOUDS

The following observations demonstrate the primacy of cloud that acts to reflect solar radiation, so determining surface temperature:

  1.   For the globe as a whole the sea is always warmer than the land and the global average for both the land and the sea is greatest in July.Global sea and air
  2.  A maximum in June/July is an anachronism. Earth is farthest from the Sun on July 4. The quotient of energy available from the sun (above cloud level) is 6% less in July than in January.

Why is the Earth warmest when it is most distant from the sun?

In northern summer the sun heats the abundant land masses and the land being opaque the surface quickly warms and with it the atmosphere.  The supply of water vapour to the atmosphere lags behind the increase in the water holding capacity of the air. There is less ocean in the northern hemisphere. In any case water is transparent and it stores energy to depth releasing it slowly. The upshot is that the heating of the atmosphere by the land rich northern hemisphere directly and dramatically reduces cloud cover.  The July maximum in global temperature is due to an increase in the diminished total of solar energy that is available in July. The amount made available at the surface is so much greater in mid year as to result in a temperature peak in mid year.

In northern autumn gathering cloud reflects more solar radiation and the globe therefore cools as its orbit takes it closer to the sun. That’s a pity because as I explained in the last post the globe as a whole is cooler than is desirable from a plant productivity point of view and all life ultimately depends on plants.

MEASURES OF CLOUD INTENSITY

From:http://www.iac.es/adjuntos/cups/CUps2015-1.pdf we have direct measurements for Izana observatory in the Canary Islands of  the number of days where cloudiness (red and yellow) is recorded and conversely the number of days where the sky is sufficiently devoid of clouds to achieve a clear sky rating (green).  The attenuation of cloud cover in northern summer is evident.
Cloud cover Teide Observatory, Spain

EFFECT OF CLOUD ON INCIDENT SOLAR RADIATION

From http://www.ccfg.org.uk/conferences/downloads/P_Burgess.pdf we have direct measurements of solar radiation at the surface.

Radiation as a function of time of year and cloud cover in Bedordshire

At this site in the UK cloud is responsible for the attenuation of solar radiation by a minimum of 26%  and a maximum of 90%.

EFFECT OF CLOUD ON SURFACE TEMPERATURE

Surface temperature is directly modulated by cloud cover as demonstrated in the following satellite photograph.Temp varies with cloud cover

image:http://www.weathercast.co.uk/weather-news/news/ch/a9b4bc85105a36c329ffc8cee57292b2/article/why_is_forecasting_cloud_cover_so_difficult.html

DISTRIBUTION OF CLOUD DRIVES SURFACE TEMPERATURE AND IS ALLIED TO CHANGE IN SURFACE PRESSURE AND GEOPOTENTIAL HEIGHT

It should be abundantly clear that it is the mediation of energy input by clouds that is the most influential determinant of surface temperature. Zones that experience high surface pressure are relatively cloud free. The essence of change in the ‘annular modes’ lies in a shift of mass from high latitudes due to ozone heating that drives down surface pressure. High southern latitudes have lost atmospheric mass for seventy years on the run. Lost mass has been distributed across the globe adding to surface pressure in those parts of the globe where increased surface pressure  is allied with relatively cloud free skies. In chapter 3 we observed that the globe warms when geopotential height increases. Geopotential height increases when surface pressure increases as the core of a high pressure cells entrains ozone from the stratosphere.

STUDY OF CHANGE IN CLOUD COVER

Cloud comes in all shapes, types, sizes altitudes and density and is notoriously difficult to measure.

At http://www.atmos.washington.edu/~sgw/PAPERS/2007_Land_Cloud_JClim.pdf  we have a paper documenting change in cloud cover and establishing correlations between cloud cover over Europe and the North Atlantic Oscillation, a local manifestation of the the northern annular mode.

Survey of cloud cover change

A POSITIVE CORRELATION OF CLOUD WITH SURFACE TEMPERATURE IN WINTER AND NEGATIVE IN SUMMER??

Note that in the mid latitudes in winter, cloudiness is associated with incursions of warm, moist air from the tropics promoting a positive correlation between the presence of clouds and surface temperature. The band of cloudiness formed by frontal activity occurs in the interaction zone between cold dry air of polar origin and warm air of tropical origin. People  might observe that ‘its too cold to rain’ when the air is coming from high latitudes. Alternatively they might say, they can ‘smell’ the rain coming when the air is humid and it comes from lower latitudes. Or they might say, ‘the temperature will increase when it starts to rain’.

To suggest that the positive correlation between cloud cover and temperature in winter is due to back radiation from clouds or that there is a positive causal relationship between the presence of cloud and surface temperature due to back radiation involves an error in logic. Its warmer in winter when there is cloud about  because the cloud arrives with a warmer, moister body of air that originates in tropical latitudes.  Cloud does not cause warming in winter and an opposite effect in summer. Cloud always involves an attenuation of solar radiation.

CONCLUSION

There should be no confusion as to the effect of cloud on surface temperature. To suggest that the climate is warming due to back radiation indicates a lack of appreciation of the reality of the way in which the atmosphere mediates the flow of solar energy to the surface of the planet and a lack of appreciation of the manner in which the atmosphere actively cools the surface.

To suggest that back radiation is causing warming without first ascertaining that cloud cover has not fallen away indicates an appalling lack of common sense and responsibility.  This brand of ‘science’ is unworthy of the name.

Many sceptics of the AGW argument wrestle with the notion that there is some sense in the idea of ‘back radiation’ from clouds and a CO2 rich atmosphere and try and assess whether the ‘feedbacks’ built into IPCC climate models are an exaggeration of reality. Most unfortunately this belief in cloud radiation feedback and the primacy of a ‘back radiation effect’ has given the ‘anthropogenic’ argument legitimacy.

Back radiation is no defence against a wind chill effect! You wear clothes to combat conduction and convection. To think otherwise is to be muddle headed.

The manner in which the Earth warms and cools indicates that there is another mechanism at work. This other mechanism has primacy and a study of the manner in which the globe has warmed and cooled suggests that it is also a sufficient explanation of the change that has occurred. It is a two way process, capable of warming and cooling as we observe on an inter-annual basis. The mechanism that is responsible for inter-annual variations is also responsible for the decadal and longer trends. When you understand the mechanism you will see that cooling has already begun and more cooling is the immediate prospect.

If you can not explain the inter-annual variations you fail climate 101. UNIPPC, you fail climate 101.

 

11 POPULATION, SCARCITY AND THE ORGANIZATION OF SOCIETY

There is a notion that the climate of the Earth is deteriorating under the influence of generations of ‘developers’.  It is asserted that the burning of fossil fuels is increasing the proportion of carbon dioxide in the atmosphere causing the air at the surface of the planet to warm. The word sustainability is hip. The generation  taking up the reins of power, the best educated ever, seeks to act responsibly. In particular they see they want to curtail is the rape and pillage of scarce resources.

Concurrently with the issue of sustainability it is asserted that population growth must be contained and same sex marriage legitimized. The left has abandoned Marxism and taken on the environment. Coal is the new demon.  The exploitation of animals should cease whether on the land or in the sea. This bandwagon has been especially popular in places where living standards are already high and the social security net well established. The thought is that we should be satisfied with less because ‘more now’ will mean less for succeeding generations. The waggoner’s look around and they see is other snouts in the trough. That disturbs them mightily.I see this behaviour when I feed my animals. The dog gets very agitated when the cat is fed.

But hey, before we get too excited we should ask the question ‘what temperature regime is most desirable’.

A good place to begin is with an assessment of the range of climates that the Earth currently provides.

With the advent of satellite surveillance from the late  1970s we have comprehensive data for the atmosphere across the entire globe. Prior to that time, the climate record is deficient lacking data for much of the oceans and the great bulk of the southern hemisphere. With the knowledge of relationships between atmospheric variables that are a product of the satellite age, and taking advantage of computers, it has been possible to project backwards on the basis of rather sketchy data, but only with any confidence as far as 1948. The resulting climate record was made available in 1996 as ‘reanalysis data’ and is accessible at: http://www.esrl.noaa.gov/psd/cgi-bin/data/timeseries/timeseries1.pl  This data is good enough for a broad brush analysis.

Striking an average for the last 69 years  we can describe the situation with respect to surface temperature. In so doing we create a snapshot of the planet.

Broadly speaking temperature varies with latitude. But by virtue of the unequal distribution of land and sea between the hemispheres the thermal regime in the northern hemisphere is very different to that in the southern hemisphere. In the mid latitudes summers are warmer and winters colder in the northern than in the southern hemisphere. The Arctic has a summer of almost five months when temperature rises above the freezing point of water. The Antarctic is frozen on a year round basis, an impossible situation so far as human habitation is concerned.

What is most comfortable? When people retire from work and are able to relocate to the places they prefer, they go to the Mediterranean, to Florida, the Bahamas and to Queensland.  In the south west of Western Australia at 30° of latitude I observe that retired people hook up their caravans and migrate north in the winter. In general, people migrate to the tropics to avoid cold winters. On that basis, let’s face it quite squarely; much of the planet is on average too cold for personal comfort. People vote with their feet.

Imagine that you are a businessman, a farmer or a retired person from another planet visiting Earth to assess its suitability as a location to spend your leisure time,  invest your inherited wealth or hard won superannuation. You are a warm blooded creature. You like a free-wheeling life and can see no virtue in decorating your frame with multi-coloured clothing. If the mind boggles at this prospect perhaps imagine that you are the seed of a hermaphroditic plant travelling on the wind. Where would you like to land?

Here are the choices according to latitude. Average temperature by latitude

If you are a photosynthesising plant you will prefer the zone inside the red rectangle where photosynthesis at a sustaining rate is possible.If you are not wearing multi coloured clothing look for all round temperatures in excess of 25°C. If you are a cold adapted plant consider the data in the table below.

Optimum Temperature Cold limit for CO2 uptake
Agricultural C3 plants that have open stomata during the day 20-30°C 0 to -2°C
Deciduous trees in temperature zone 20-30°C -3 to -1°C
Coniferous trees 10 -25°C -5 to -3°C

How do you rate the real estate?

The life forms that inhabit Earth have evolved over time. We know that species can adapt to some extent when circumstances change. When conditions become too adverse organisms migrate to seek what they need elsewhere. The  Earth provides multifarious environments. However, looked at in the broad, and without the rose coloured glasses, cold weather is the Achilles heel of planet Earth, and in particular pole-wards of 30° of latitude. Cold is the circumstance that is most threatening when one is caught outdoors, even when one is endowed with the multi coloured clothing.

We are always curious as to how plants and animals can exist in the most adverse circumstances. This is because, outside the tropics, our planet is by and large, inhospitably cold in part of, or even the entire year.  We feel the pinch of it.

Why then do we assume that a warming planet is a bad thing?

A QUESTION OF PRODUCTIVITY

If we look at the question simply in terms of the productivity of the Earth as dictated by surface temperature and precipitation a stark reality emerges. The map below shows net primary production (or carbon output from photosynthesis less that used in respiration). Mysteriously, many of the most productive parts are as yet sparsely populated.

Net pimary production

Source: http://earthobservatory.nasa.gov/Features/HANPP/

One is surprised at how little of the Earth performs well in terms of plant productivity.  All life forms depend upon the productivity of plants. Carbon output (as carbohydrate and cellulose) depends upon photosynthesis and is limited by temperature and precipitation. The most productive areas lie between the tropics of Capricorn and Cancer, the warmest and wettest areas on the surface of the Earth. The bulk of the rest of the Earth is by comparison a relative wasteland of, at best ‘seasonal’ productivity. Here food must be preserved, stored or transported from more productive locations to sustain a population over the period when nothing much grows. The alternative is to grow plants in a heated chamber supplemented with light and fed with compressed carbon dioxide out of thick steel walled steel cylinders at considerable expense.

In the tropics temperature ranges between 20 and 30°C across the year.  Three crops are possible within the space of a year. Latitudes south of 60°south, in every month, and north of 60° north, between October and March, are uniformly inhospitable to plant life. No plant survives permanent burial in ice and snow. Between these extremes, at 30-60° of latitude the northern hemisphere winter months can be excruciatingly cold and although cold adapted plants can assimilate carbon at quite low temperatures the rate  is excruciatingly slow. Snow adapted species have needle shaped leaves that hang down to inhibit the accumulation of snow so that they can remain free of that burden and access light. Trees with broad leaves drop them prior to winter choosing to hibernate rather than lose branches as they accumulate snow. In the subtropics of the southern hemisphere, although winter temperature is less limiting and there is little chance of a damaging burden of snow  the area of suitable land is relatively small and much of  it inhospitably dry. This is the domain of the hardy, drought tolerant, evergreen eucalypt that, when introduced to Africa and the Mediterranean, greens the dry country and displaces the local vegetation much to the chagrin of the local inhabitants who see this interloper as a weed.

A dispassionate view of the Earth, considering its ability to promote plant life, sees the planet as distinctly cooler than is desirable.  Earth could support more life if it were warmer, especially in winter. Accordingly we find that the most populated parts of the globe lie in the well watered tropical and subtropical  climates, mostly on the eastern side of the major continents where precipitation falls in the warmer summer months. These climates favour photosynthesis at rates that are respectable.

The basic premise that a warming planet is bad for mankind is just plain silly. The reverse is in fact the case. Modern civilization enables humans to live in relatively cool circumstances only when provided with food, elaborate and expensive shelter and energy for heating the interiors of structures. Its called ‘central heating’.Venturing outside one must don many layers of clothing, making work tedious. But it’s less tedious and precarious than working in space or on the moon. Humans do adapt very well, but there is always inconvenience and cost involved.

In locations where winters are cold animals are provided with warm shelters. They no longer forage because there is nothing to forage on. Food grown in summer is stored for the winter.

The pattern of consumption of carbohydrate  by human species appears below:

Consumption

It is plain that there is a mismatch between production and consumption. This reflects:

1. The ability to move commodities. In short, transportation involving machines and energy.

2. Diversity in living standards. Machines and energy are not universally available.

3. A great deal of spare capacity for further growth of population based on exploitation of potentially productive areas currently sparsely populated. Much greater numbers could be catered for if water can be made available in warm but dry locations where population density is currently very low. With machines and energy this is possible.

Given that the temperature of so much of the globe is limiting because its too cool, a little extra warmth is highly desirable. The increase in the length of the growing season associated with extra warmth, a characteristic of climate change in the northern hemisphere, has been beneficial.It should be welcomed. It should not be the cause for concern.

Given that plants use less water as the carbon dioxide content of the air increases that circumstance should be welcomed.

Relax, its all good on the climate front.

The real problem is that our societies are so poorly organized that, although energy is cheap and the capacity to produce machines has never been greater than it is at the present time there is currently a deficit in demand for machines. In many parts of the globe, including the heartlands of western civilization youth can not find useful employment. Banks are awash with funds and interest rates are at historic lows. Governments are spending a lot more than they earn without taking up the economic slack. Commodity prices are falling. No-one wants to buy.

This will end badly. Flights of fancy are counter-indicated. We must look to create the greatest good for the greatest number.

 

 

The Arctic stratosphere, so cold today

Reference frame

The diagram above serves as a reference frame. The middle stratosphere at 30 hPa has been off the scale cold since the end of November as the Arctic began to experience Polar night.

 

From http://earth.nullschool.net/#current/wind/surface/level/overlay=temp/orthographic=-229.99,86.00,439/loc=30.031,38.214

Surface

The great bulk of the northern landmasses are experiencing sub zero temperatures. The winds streaming out of the Arctic are warm by comparison with the air near Lake Baikal and the interior of Iceland. Reputedly China is experiencing its coldest winter for thirty years. The diagram below shows the circulation of the air and its temperature at 10hPa or 30 km in elevation.

10

The cold is due to the descent of mesospheric air in the circulation at left centred over Russia and spiralling in to the surface in the proximity of Lake Baikal. The warm ascending circulation on the right that is centred on the north Pacific is due to the persistent presence of high concentrations of ozone that gives rise to low surface pressure. By contrast, the Siberian high pressure zone centred on lake Baikal has an elevated surface pressure as seen below.

SLP

The diagrams below show the evolution of temperature at elevations between 10hPa (30 km) and 70 hPa (17 km) in the area of the polar cap that takes in only that part north of 65° north, where the polar night prevails. It is important to realize that Lake Baikal, where the descent of very cold air is centred is at latitude 53° north. We are in fact sampling the temperature of the air outside the zone where the cold air originates.

10 T

A sudden stratospheric warming affecting the lower stratosphere has materialized in the last few days.

30T

The warming is more apparent at 30 hPa than at 70 hPa.

10T

Just a few days ago on the 24 th January we had this distribution of ozone at 10 hPa. Notice that there is an increasing deficit in ozone from the equator towards the pole at this elevation with up to 20 ppm on the perimeter and down to 6 ppm in the core. This reflects the fact that the air that is descending is low in its ozone content and high in NOx, compounds based on nitrogen that destroy ozone. There is an ascending circulation located over the ozone rich north Pacific that  was apparent above. That ascending circulation drags in air from the core and the entire ozone rich mass of air rotates about the core in a clockwise ascending spiral.

10 ozone

Observe the bulking up of the ozone driven circulation over the last three days. By the 28th there is an increase in the volume of ozone deficient air from the core inside the dashed oval that serves as a marking of the zone of ascent.

10hPa ozone 27

Latest available data is for the 28th January.

10 ozone 28

It is of the greatest importance that you understand that the inflow of NOX modulates the ozone content of the wider stratosphere. Just because climate science as embodied in the works of the IPCC is ignorant in this respect (wilfully so, I imagine, because they can’t be that unobservant). So, I will run down through the atmosphere to show you the process in detail.

At 20hPa background levels of ozone in low latitudes are distinctly lower than at 10hPa so there is less contrast between the ozone rich ascending circulation over the north Pacific and the background. We observe an extensive lateral mixing process in action. We have no means of judging the extent of vertical mixing in a diagram of this sort. There is a secondary exchange region, much smaller in scope at about 2 o’clock over the Middle East. The ozone deficient core is centred on Siberia and elongated towards Greenland. The ozone deficient core is weaker and less extensive than it is at 10hPa.

20 ozone

Below, the zone where ozone accumulation drives the ascending circulation is evident at 30hPa, an elevation of 23 kilometres.

30 ozone

At 30hPa ozone peaks over the North Pacific at 10ppm. On the periphery we have as low as 5ppm and in the core as low as 3ppm.

40 Oz

At 40 hPa the contrast between the ozone rich north Pacific at 9 ppm and the background at 3 ppm is still marked but the core is much reduced in area. There is less lateral mixing implying a steeper rate of vertical ascent in the ozone enhanced zone.

50hPa ozo

At 50hpa core ozone values in the north Pacific zone are in the region of 9ppm but ozone values fall away strongly towards lower latitudes implying fast ascent over the north Pacific. Notice the extent of the penetration of the Arctic circle by ozone rich air. The temperature of the air at 60-90° north reflects the varying penetration of the night zone by ozone rich air that circulates on its periphery. ‘Planetary waves’ reflect the pattern of ozone variability in the atmosphere that drives surface pressure. Cold core polar cyclones are warm core aloft. Without a warm core there can be no ascent.

70 oz

At 70 hPa the descent of cold vortex air is the dominant feature of the atmospheric circulation. This air has changed very little in its temperature in its descent from 10 hPa at 30 km to the 70 hPa level at 17 km and nor would we expect it to. Although it may have run a perimeter course and suffered some admixture of ozone rich air in the process it has moved only 13 km in the vertical and it has essentially retained the character that it did at source.  We don’t have any indication of the vertical vector in this plot but common sense dictates that the air can not pass through an ozone rich zone without having its temperature altered considerably. The implication is that the vertical vector at 9 0’clock is probably more important than the horizontal vector.  The question is, How far does this mesospheric air descend and what is its effect on the circulation of the lower atmosphere.

70 T Circ

The last observation of the temperature of the stratosphere that is available is at 100hPa.

100 oz

In low latitudes through to about 30hPa there is no ozone. The uplift of tropospheric air containing NOx destroys ozone at the 100hPa level. The north Pacific still rejoices in up to 4ppm ozone while vortex air at 1.5 to 2.ppm ozone occupies an extensive zone from 30° of latitude northwards.

250

At 250hPa (9km) very cold mesospheric air is being mixed with warmer stratospheric air. Areas of low surface pressure on the periphery give rise to cyclones( cold below, warm at 250hPa). The Jet stream manifests at the edge of the circulation as a wave like formation.

250hPa T Global

Globally, we see that polar cyclones are warm core circulations aloft, especially evident in the southern hemisphere at this time of the year.

Some take home messages:

  • Surface temperature in the winter is driven by a dramatic change in the source of the air, being driven from aloft. Notice the very cold air at 250 hPa over Lake Baikal.
  • According to the rate of delivery of mesospheric air into the polar atmosphere the ozone content of the air will change and with it surface pressure polewards of about 50° of latitude. This pattern of surface pressure change shifts atmospheric mass between high and low latitudes as the ozone content of the air increases driving surface pressure ever lower. This (unknown t the IPCC) is the origin of the annular mode phenomenon.
  • The winter polar circulation is highly energetic and is subject to ascent and descent. It is not stratified.
  • According to the ozone content of the air and the contrast in density that arises polar cyclones are generated on the margins of descending mesospheric air.
  • Planetary waves reflect the ozone content of the air.
  • Polar temperatures aloft reflect the pattern of distribution of warm and cold air. There is nothing mysterious about sudden stratospheric warmings.

Last but not least lets see this:

1 hPa Jan 8

1hPa 29th

Between the 8th and the 28th of January the ratios have changed implying that ozone has built up in the Pacific sector and is there is more ozone in the core than there was, perhaps via an exchange between the two. Or perhaps it represents a reduction of the inflow of mesospheric air heralding a major warming of which the one that we are seeing today is just a precursor?

Sources:

http://www.cpc.ncep.noaa.gov/products/stratosphere/strat_a_f/

http://www.cpc.ncep.noaa.gov/products/stratosphere/temperature/

http://earth.nullschool.net

 

 

 

 

7 SURFACE TEMPERATURE EVOLVES DIFFERENTLY ACCORDING TO LATITUDE

Surface atmospheric temperature varies strongly month to month and year to year. The broad brush view is obtained by looking at variations across the decades. SAT by decade

In the broad we can say that in terms of the decadal variations:

  • Temperature in high latitudes is much more variable than in low latitudes.
  • Temperature is much more variable between 30°north latitude and the Arctic than elsewhere.
  • Cooling manifested in the early decades other than in near equatorial latitudes where the extent of temperature change is least.
  • It is clear that temperature change is a two way process.
  • Cooling occurred in the decade after 1986 in the tropics as greenhouse gases accumulated. We have no explanation for this cooling, and that which affected the highest latitudes and the latitude band 30-60° north from 1956 through to 1976 and are unable therefore to be certain that it will not recur.
  • Both the Arctic and the Antarctic began a warming phase starting with the decade 1977-86. The warming in the Antarctic is faster in the early phase but slower in the latter. The Arctic warmed particularly strongly after the turn of the century as the rate of warming in the Antarctic fell away. Greenhouse gases other than ozone are well mixed and vary very little according to latitude. Something other than greenhouse gases must be responsible for the variation in the rate of temperature change according to latitude.
  • In general the temperature of the mid latitudes of the northern hemisphere cooled and warmed with the Arctic but to a lesser extent.
  • The evolution of temperature in the tropics and the mid latitudes of the southern hemisphere is similar. These latitudes cooled slightly as the warming in high latitudes accelerated after 1977-86.

SURFACE TEMPERATURE EVOLVES VERY DIFFERENTLY ACCORDING TO TIME OF THE YEAR

Here we look simply at the difference between the first and the last decade in each month of the year.

change in t by lat

  • The Antarctic warmed in winter and cooled in summer showing more change than the Arctic.
  • The Arctic warmed slightly in summer but a great deal in winter.
  • The mid latitudes of the northern hemisphere at 30-60° north warmed in autumn and spring. This lengthened the growing season in a part of the globe that includes the heartlands of Western Civilization, Western Europe and North America where winters are cold but can sometimes be severely cold. Industrialization and the ready availability of cheap energy have made it possible for these parts of the planet that experience very cold winters and a short growing season to support a greater population. Warming in autumn and spring has assisted this process.
  • We see that warming is in no sense ‘global’. Neither is it consistent  between one month and another.
  • In those places that suffer from cold, warming is temporarily constrained to the cooler winter months. Where winters are unfavourably cold, in fact most of the planet, this is beneficial.
  • Plainly the major dynamic here has nothing at all to do with the concentration of a greenhouse gas that is well mixed. If it were, the warming would vary little between the seasons and there is no reason to expect that it should vary with latitude.
  • If there is a background level of warming due to increasing greenhouse gases that provides a plateau upon which ‘other forces’ superimpose change then we would see that background warming manifest at that time and in that place where the ‘other forces’ are least active. Unless we can decide what those other forces are and be truly cognizant of the mechanism that is behind them we are unable to estimate the change that they are responsible for and can have no idea whether man is having an influence on he climate or not. If we go ahead and suggest/maintain that man is responsible for the warming of the globe as a whole we make an error in logic. We can not be sure of anything. To suggest that man is likely to be responsible and to assert that we can do this with a high level of confidence  is clearly overstepping the mark.

In this circumstance how are we to proceed? Plainly the bulk of the warming that has a seasonal component is not connected with greenhouse gases. We must ask what causes this warming. In particular what is it that causes warming in winter in high latitudes?

In the next chapter we look at the extent of variability in temperature according to the month of the year. We find that there is a consistent pulse attached to warming that indicates its source. At first glance the process of change is apparently  hemispheric in its incidence. However, when we look closer we see a unifying signal emanating from the Antarctic stratosphere that governs all. The degree of warming is very different according to latitude even though it bears a consistent time signature. There is a pacemaker that orders its heartbeat. The closer one approaches the poles the more impressive is the beat of that pulse. That pulse is strictly seasonal. The mechanism is fascinating. It represents a new frontier for climate science. Get out your stethoscope, gather round, here is a curiosity, here is a case that is entirely unfamiliar.

 

 

6 THE POVERTY OF CLIMATOLOGY

 

Meteorologists are well aware that surface temperature varies with geopotential height at 500 hPa. The United States National Oceanic and Atmospheric Administration says as  much below.  The full text can be accessed at: here:https://www.ncdc.noaa.gov/sotc/global/201507

GPH and ST anomalies

But hey, there is a problem here: The  text above the map states  that there is a relationship between geopotential height at 500 hPa and surface temperature. But thereafter, the commentary is  driven by an overarching belief that carbon dioxide drives surface temperature and it is therefore constantly escalating.

But carbon dioxide is well mixed in the atmosphere and cannot account for regional warming on a month by month basis.  The observed warming is  regional in scope and it conforms to the pattern of the distribution of surface pressure and geopotential height, not the distribution of carbon dioxide that is in fact well mixed and very close to uniform in its distribution throughout the atmosphere.

And surface temperature is not constantly escalating as we will see below.

Gordon Dobson started measuring total column ozone in 1924 and soon noticed that total column ozone mapped surface pressure. An increase in surface pressure that is related to the distribution of ozone can originate in two ways namely:

  1. A reduction in the ozone content of the column above 500 hPa allowing the upper half of the column to become more dense, contract and thereby allow more molecules to  populate that column. But, this is not possible in a column of descending air that has its upper extremity in the stratosphere.
  2. A piling up of atmospheric mass against the force of gravity in the mid latitudes due to a shift in mass from high latitudes. The density of the column in the mid latitudes is increased as atmospheric mass accumulates.This should reduce geopotential height at 500 hPa.  For geopotential height to increase at 500 hPa the increase in atmospheric mass must be accompanied by warming below the 500 hPa pressure level . The lower half of the column becomes less dense as the column weight increases.

So, the question arises, is the increase in geopotential height at 500 hPa due to the descent of ozone within the atmospheric column of descending air as the weight of the column increases?

SCRUTINY FROM ABOVE

When satellites were equipped to study the atmosphere in 1969 ozone could be mapped more effectively than via surface measurement. The following report of 1973 links the distribution of ozone to geopotential height at 200 hPa :

Sensing ozone

Source: http://link.springer.com/article/10.1007%2FBF00881075#page-1

Plainly total ozone varies with the upper troposphere (200 hPa) geopotential height,  and ozone distribution at that level defines the circulation of the air and the jet streams.

If you have read chapter four you will be alert to the fact that south of about 20° of latitude ozone begins to affect the lapse rate at the 300 hPa level  and that the notion of a demarcation between  troposphere and stratosphere via a hypothetical ‘tropopause’ is no longer sustainable. Perhaps it is the fuzzy boundary phenomenon that leads to the ambiguity of lumping together the ‘systematic variation in ozone distribution in lower stratospheric circulation‘ and the ‘correlation between ozone and upper troposphere geopotential height’ in the abstract above.

The variation in ozone partial pressure drives geopotential height at 200 hPa. Of this there is no doubt. But, does it drive  height at 500 hPa? The study reported below bears on this matter.

Baroclynic development

Found at:http://ephyslab.uvigo.es/publica/documents/file_21530-A%20climatology%20based%20on%20reanalysis%20of%20baroclinic%20developmental%20regions%20in%20the%20extratropical%20NH-ANYAS-2008.pdf

The authors of this study set out to examine the distribution of winter geopotential height minima over the period 1958–2006 at the 200, 500, and 850 hPa pressure levels. In effect they engaged in a very extensive mapping exercise to locate cyclones of ascending air that are associated with low surface pressure at three pressure levels, 850 hPa close to the surface, 500 hPa at the mid point and 200 hPa that is plainly within the fuzzy boundary between the troposphere and the stratosphere. When the geopotential height at a central point was lower than six or more of the surrounding eight points on a 2.5° latitude and longitude grid  the authors nominated that point as a minimum of geopotential height and mapped it as seen above.

The map reveals that height minima at 500 hPa and 200 hPa have a common geographical distribution. Furthermore, in the lowest map we see an extension of the relationship into subtropical latitudes that sees variations of geopotential height at 850 hPa to some extent aligning  with those at higher elevations.

In the light of this knowledge we might say that the temperature of the surface of the Earth is as much tied to variations in geopotential height at 200 hPa as it is to variations in geopotential height at 500 hPa and the implications would be very much clearer.

Lets pause at this point to remind ourselves of the very simple relationship between the capacity of the air to hold water vapour and its temperature. If the temperature increases more water can be held in the invisible gaseous phase. If temperature increases the droplets of moisture and highly reflective multi branching crystals of ice that constitute clouds will simply disappear. When this occurs the surface of the planet receives more solar radiation and it warms accordingly.

Lets pause a moment longer to observe that this very different chain of thought  is the narrative that should follow the observation that surface temperature is related to geopotential height…… and I hope that the United States National Oceanic and Atmospheric Administration takes note and changes their narrative accordingly.

The critical observation is that geopotential height minima have a common distribution throughout what we refer to as ‘the troposphere’ and are forced by one means or another by differences in the ozone content of the air  at the 200 hPa level and above. Many meteorologists being the practical, results oriented fellows that they are, have long noted that cyclogenisis  at elevation seems to be a requisite for the development of cyclogenesis below.

Meteorologists examine the circulation of the air at 500 hPa to be relatively free of the influences of topography, vegetation, land and sea, in order to predict the course of weather in the days ahead.  We see that the action at 500 hPa  is plainly dictated at 200 hPa and above (the lower stratosphere) where the largest variations in geopotential height, ozone partial pressure, atmospheric density and air temperature are observed. But, is that the end of it?

CHANGE IN HIGH LATITUDES DRIVES CHANGE IN LOWER LATITUDES

Chapter 5 identified the origin of so called ‘cold core’ Polar Cyclones in the heating of the air above 500 hPa by ozone. A shift in atmospheric mass from high to mid latitudes is forced by enhanced cold core Polar Cyclone activity that drives surface pressure lower in high latitudes. The result is enhancement of surface pressure in the mid and low latitudes.

This chapter establishes that geopotential height at 200 and 500 hPa vary together in the extra-tropical latitudes. Furthermore, the increase in geopotential height that accompanies the surface pressure change is accompanied by a loss of cloud cover. All ultimately relate to the changing flux of ozone in the upper half of the atmospheric column in high latitudes that occurs in winter that drives both the exchange of atmospheric mass and the observed change in the distribution of ozone that drives the circulation of the atmosphere at 200 hPa   in the extra-tropical latitudes.

We are aware that high pressure cells bring air from aloft towards the surface. We are also aware after chapter 5 that the stratospheric circulation involves descent in the mid latitudes. That brings air with an elevated ozone concentration into the troposphere.

Soooooooo, in the absence of an ability to touch, feel, smell or see what is actually happening in the atmosphere and with a sense of caution related to the fact that our hand waving and speculation is not always related to reality, and that we don’t always get things right we should inspect the surface temperature record for date stamping that is related to ozone flux at one pole or the other during the winter season. That should go a long way towards settling the matter, at least until a better explanation comes along……you know, I don’t think the science is ever completely settled.

THE SIGNATURE OF OZONE VARIABILITY THAT IS DATE STAMPED ON THE SURFACE TEMPERATURE RECORD

The tropics constitute a large surface area and make a huge contribution to the global temperature average especially on multi-year ENSO time scales. But surface temperature is actually most volatile on a monthly basis in the mid and high latitudes where ozone directly regulates cloud cover.

It is in the tropics that the waters of both hemispheres are brought together and homogenized. We can eliminate short term variability due to wind by looking at decades rather than years.

In the diagram below we have sea surface temperature at decadal intervals. Tropical sea surface air temperatures in April, May, June and July behave as if they were a bundled package with little variation between  months.  Departures seem to occur only when there is a marked change in trend. The month of April shows more variability and July the least.

SST Tropics Ap,M,J,J

By contrast, we see in the graph below, drawn to the same scale, that there is a big variation in air temperature between August and March.  It is between August and March that polar processes engineer large changes in surface temperature according to the flux in ozone from month to month, year to year, decade to decade and across the centuries. Pre-eminent in terms of volatility are the months January February and March and to a smaller extent December, under the sway of Arctic polar processes. The Arctic, precisely because of the limited descent of mesospheric air is supercharged with ozone. When change occurs it’s dynamic. Its like coming into a perfectly dark room and switching on the light.

SST tropics other months

Source of data: http://www.esrl.noaa.gov/psd/cgi-bin/data/timeseries/timeseries1.pl

Antarctic atmospheric  processes that involve the same interaction with mesospheric air as in the Arctic, but on a much more continuous and interactive basis, are most volatile between August and November. The movement in tropical sea surface temperature in these months is in the same direction at the same time but has less vigour in line with the reduced partial pressure of ozone in the entire southern hemisphere. The fluctuations in cloud cover and surface temperature engineered by the Antarctic are consequently muted and can be compared with the act of switching on a light fitted with one of these newfangled environmentally conscious, energy saving  halogen globes that emit much less light.

Observe that in the last decade surface temperature in the tropics between August and November has fallen away, a departure from the long term trend but not unprecedented.

In the key months where the Arctic has a strong influence on cloud cover and surface temperature (January through to March) a departure from trend manifested a decade earlier in  1997-2006. A cooling trajectory was established in the last decade in all months that are strongly affected by polar atmospheric processes. This is due to a continuing reduction in ozone partial pressure in high latitudes in both hemispheres that goes along with a cooling of the high latitude stratosphere.

We will see that January and February are months of most extreme temperature variability in all latitudes between 30° south and 90° north while June and July are the months when the Antarctic most heavily stamps its authority on temperature between 30°south and 90° south.

We will see that the change in surface pressure due to the flux in ozone in high southern latitudes happens on very long time  scales with a swing so wide as to govern the ozone content of the entire stratosphere. The Antarctic makes the centennial swells upon which the Arctic generates the energetic surface chop.

Why did tropical sea surface temperature decline in the decade 1967-76? Why the spectacular increase of 0.5°C over the following two decades? Why the departure from trend between January and March in the last two decades. Obviously, there are more complex factors at work than a the remorseless increase in the very tiny proportion of the well mixed greenhouse gases in the atmosphere.

But let me hasten to add that there is one, naturally occurring greenhouse gas that is quite unequally distributed, that varies in its concentration across the year and over time. It varies under the influence of polar atmospheric processes that dictate the rate of entry of mesospheric air that contains the chief agent of erosion  of ozone in the stratosphere described as NOx.

Follow the data, that is what science should be about. If  the narrative doesn’t follow the data, its propaganda.

Lets face it, people tell fibs to suit their own purposes.

5 The enigma of the ‘cold core’polar cyclone

70-90S

Source of data above:http://www.esrl.noaa.gov/psd/cgi-bin/data/timeseries/timeseries1.pl

When I started looking into atmospheric matters back in 2008 and I discovered that the temperature of the Antarctic in mid winter at 10 hPa had jumped in the 1970’s as the atmospheric pressure at the surface took a plunge it started me on a search for answers. This post tells you what I have discovered as a private self funded researcher seven years on.

The cold core polar cyclone

The ascent of the air at the core of a polar cyclone is a mystery because the near surface air in a polar cyclone is cold and dense. Polar cyclones form in high latitudes where the surface and the air in contact with it is very cold. Air that is cold and dense should not ascend. The  unsatisfying explanation that is offered in the meteorological literature has to do with fronts between cold and warm air and the Coriolis ‘force’. But the Coriolis ‘force’ is not a force at all. It explains the direction of rotation and has nothing to do with the force responsible for uplift or down-draft.

Anticyclones form in the mid latitudes where the surface is warmer than in high latitudes. This is the case despite the fact that anticyclones form over water that is relatively cold for the latitude, located on the eastern margins of the oceans. Anticyclones also form over cold land masses in winter. To take the land based anticyclone out of the equation we can examine the summer hemisphere.

It is now possible to examine the atmosphere in real time and toggle back and forward to look at it as on some day in the past. It’s animated too which is a real help. You get spot values at the click of your mouse. This is a fantastic resource for a student of the atmosphere. Find it at:  earth.nullschool.net.

First, sea surface temperature. Observe that the eastern margin of the Pacific is cooler. The ocean moves clockwise, driven by the winds.

SST

The day I have chosen is the first day of September 2015. We will stick to this single day throughout.

Below we have atmospheric pressure with an overlay of wind at 1000 hPa.

The lines indicate the circulation of the winds. Three tropical cyclones manifest south of a large high pressure cell. The high has a central pressure of 1030 hPa.  Cold core Polar cyclones are also in evidence associated with zones of low surface pressure in high latitudes. The air circulates in an anticlockwise direction around cyclones and a clockwise direction around anticyclones.

1000hPa SLP

The map below shows Wind Pressure Density at 1000 hPa (close to the surface) in terms of kilowatts of wind energy per square metre. Tropical cyclones are powerful systems but the energy is generated very close to the core and has little lateral spread . By contrast the cold core polar cyclone shows a fraction of the energy that is generated in a tropical cyclone and the energy manifests remotely, and in particular over the oceans rather than the land.

1000hpa

At 850 hPa (1000 metres) the energy attached to a cold core polar cyclone manifests over both the land and the sea.

850

The map below shows air temperature at 850 hPa (1000 metres). Shades of green represent temperatures above 0°C . Shades of blue indicate temperatures below 0°C. It is apparent that the air in cold core cyclones at 850 hPa is close to 0°C, while the air in the major anticyclone rejoices in a temperature of 12°C, well below the 24°C that is the temperature of the sea surface only 1000 metres below.

850 Temp

Below we have the temperature of the air at 500 hPa, roughly 5.5 kilometres in elevation with half the atmospheric column below and half above. All temperatures are sub zero.  At its heart the anticyclone has a temperature of -5°C  while the cold core cyclones have central temperature between -24 and -35°C.

500 temp

Below again: There is a marked increase in wind pressure density on the outer margins of cold core cyclones at 500 hPa. But each polar cyclone conserves a relatively extensive core where the horizontal vector in the movement of the air is slight and we can infer that the vertical vector is pronounced. These cold core cyclones are now immensely more powerful and extensive systems than tropical cyclones.

500 WPD

At the 250 hPa pressure level, about 9 kilometres in elevation, extreme wind speeds manifest on the outer margins of cold core polar cyclones while the cores of vertically ascending air are extensive.

250 wind

Below, we see that at 250 hPa the ascending air in the core of a polar cyclone is warmer than the the rapidly rotating air that surrounds it.

250hPa temperature

So, we see that at 9 km in elevation a polar cyclone has a warm core. The laws of physics are not flouted by the ascent of relatively dense air that is somehow magically displaced upwards by air of lower density. It is the power generated aloft that pulls denser air into the system from below. In effect we have the engine attached to an extraction fan above, a pipe extending towards the surface, narrowing as it does so, sucking dense air into the upper atmosphere. This is like a vacuum cleaner that sucks in cold air and pushes out hot air. At 250 hPa just 25% of the atmosphere is above and 75% below. Somewhere between the 500 hPa and the 250 hPa pressure level (5.5 km to 9 km) sufficient energy is imparted to the atmospheric column within these polar lows to reduce the lapse rate of the air with increasing altitude to the point that the air within these polar cyclones becomes relatively warmer and less dense than the air that surrounds the core.

Gordon Dobson who invented the spectrophotometer to measure total column ozone in 1924 very quickly discovered that ozone mapped surface pressure with more ozone in the atmospheric column of low pressure systems than in high pressure systems. De Bort, the Frenchman who put more than 500 balloons into the atmosphere around 1900 discovered that the air became warmer in cells of low surface pressure at a lower elevation than in high pressure cells. Both gentlemen were independently wealthy private researchers who considered that the science of their day was not settled.

There should be no mystery as to the cause of this phenomenon. Once initiated, the system gains momentum by virtue of the fact that the air that is being elevated is warmer that the air through which it ascends. This is so because the surface air is warmer than the air aloft. This gives rise to very extensive areas of extremely low surface pressure in high latitudes.

As the ozone content of the air increases in winter, the jet streams so formed become more intense.

As the ozone content of the air varies from year to year, so too does surface pressure in high latitudes.

As surface pressure falls away in high latitudes it rises in the mid latitudes where anticyclones form.

How far does the air ascend in polar lows?

70 wind

The pattern of ascent is still present, albeit more gently so, at 70 hPa (above) with 93% of the weight of the atmosphere below, an elevation of just 17 kilometres. A balancing descent occurs in the mid latitudes associated with anticyclones.

10hPa wind

The air is still mobile at 10 hPa (30km) with 99% of the atmosphere below. Importantly, there is both ascent and descent.

10 pacific descent

See above. At 10 hPa in early spring in the southern hemisphere the air is very mobile in high latitudes. Gentle descent is apparent over the cold waters south of the equator in the eastern Pacific. This feeds ozone into anticyclones.

70 pacific desc

Above, at 70 hPa we have very strong ascent in the high latitudes and broad areas of gentle descent in the mid latitudes. The southern hemisphere is approaching its seasonal peak in ozone  partial pressure that occurs in October. The winds at 70 hPa reflect where that peak occurs. We are looking at a donut shape sitting atop the Antarctic continent.

250 sth pacific

At 250 hPa the southern hemisphere is in a frenzy driven by differences in ozone partial pressure between air masses of different origin. Patterns of descent will drive the evolution of geopotential height, cloud cover and surface temperature in the manner described in chapter 3.

500 globe pacific

At 500 hPa there is a relaxation in the circulation.

700 desc Pacific

At 700 hPa the winds are more benign. The pattern of descent over the south Eastern Pacific is typical.

700 pacific

The pattern of surface pressure is closely aligned with surface winds. Very high pressure in the south eastern Pacific is associated with very cold waters in this region promoting settlement. This area gains atmospheric mass very strongly when it is lost at 60-70° south very much influencing the strength of the trades and the westerlies across the Pacific and thereby the ocean currents that determine the relative extension of the ‘cold tongue’ across the equatorial Pacific that is the essence of the ENSO phenomenon.

70 Antarctic SLP wind

The flow of the air over Antarctica at 70 hPa is very much related to the pattern of surface pressure forced by the ozone content of the air at lower altitudes. It is the ozone content of the air between 500 hPa and  the 250 hPa that is deterministic so far as the circulation of the winds is concerned.

Notice the zone of high surface pressure over the Antarctic content that sets up a pattern of descent near the surface.

Mesospheric air descends in the core of this circulation. It is relatively deficient in ozone and has damaging levels of the ozone destroyer NOx . The British Antarctic base at Halley Bay lies to the East of the Antarctic Peninsula. When  total column ozone was first measured there using Dobson’s spectrophotometer in 1956 Dobson was amazed at the relative deficit in ozone by comparison with the northern hemisphere. But the deficit disappeared in November, as it does today. As surface pressure has fallen in high southern latitudes due to the increase in the partial pressure of ozone in the donut shaped pattern of polar cyclone activity that surrounds Antarctica, as atmospheric pressure has increased in the mid latitudes of the southern hemisphere expanding the Hadley cell in response to falling pressure in high latitudes, the donut of low pressure has been forced south, the tongue of mesospheric air is narrowed but it penetrates more deeply. This is the chief, albeit unrealized, one hundred percent home grown, all natural, ozone hole dynamic.

CONCLUSION

So called ‘cold core’ polar cyclones are warm core aloft and they do not contradict the laws of physics. By virtue of the fact that they depend for their activity on the partial pressure of ozone in the air that fluctuates on all time scales we must look to the cause of these fluctuations if we wish to understand the climate at the surface of the globe. It is the exchange of atmospheric mass between high and other latitudes that determines surface wind, cloud cover , the energy flux into the oceans and surface temperature. This is at the root of weather and climate change. I will demonstrate in later chapters that what happens in Antarctica rules all.

The flux in surface pressure that is wrought by ozone is greatest in winter and this puts a date stamp on the  surface temperature record. That identity will be revealed in due course.

 

 

 

4 The geography of the stratosphere mk2

My previous effort in relation to this chapter attracted very few readers. So, here I re-state the argument, hopefully in a more accessible form. I do so because the subject matter is critical. A great deal depends upon an appreciation  of the matters described below. If there are queries and disagreements lets have them up front in the comments:

The description of the nature of the stratosphere given below differs from accounts that you will see in the literature in important respects, and for good reason. The stratosphere is a complex entity, much more complex and interesting than the troposphere. By virtue of its effect on atmospheric pressure in high latitudes (directly responsible for Polar Cyclones and the Jet Streams) the stratosphere drives weather and climate, the planetary winds and surface temperature on all time scales. This realization is new, a product of investigation into what is known as the Annular Modes (ring like modes) of variation in surface pressure over just the last couple of decades and insights into the origin of polar cyclones together with the observations of the early French balloonist De Bort, Gordon Dobson and others that ozone maps surface pressure.  It has long been known that there is enhanced total ozone in cyclones of ascending air (called cold core cyclones) but the significance of this observation has been unrealized.  Ozone heating of the upper part of the atmospheric column is responsible for these cyclones.They are so pervasive in high latitudes that the formation of more cyclones and the intensification of existing cyclones changes surface pressure in high latitudes shifting atmospheric to or from high latitudes in the process.

It is the difference in atmospheric pressure at the surface of the planet that determines the planetary winds, patterns of precipitation and surface temperature so we must get a grip on the nature of Polar Cyclones if we are to understand surface climate.

There are three modes of heating of the air, heating by a warm surface, heating within the atmosphere due to the release of latent heat and heating within the atmosphere by absorption of long wave radiation from the surface of the Earth. Notably, it is the heating of the air due to the presence of the greenhouse gas ozone that accounts for the warmth of the stratosphere and the generation of polar cyclones that are the manifestation of the strongest modes of atmospheric heating on the planet, albeit hitherto overlooked.

In this account I focus exclusively on the southern stratosphere because it is simpler, being relatively unaffected by north south intrusions by land masses, except in the notable instance of South America. In the southern hemisphere a strong accent is given to polar processes due to the  presence of the Antarctic continent almost symmetrically distributed about the pole.  In southern winter the massive and relatively invariable heating of the entire northern hemisphere adds to surface pressure in high southern latitudes. In fact this seasonal shift of atmospheric mass to the southern hemisphere creates a planetary high in surface pressure over Antarctica. The atmospheric dynamics resulting from the donut shaped peak in ozone partial pressure at 60°-70° south latitude result in an ‘ozone hole’ over the polar cap. The chemical composition of the space inside the donut of ozone rich air, and the manner of its escape into the wider atmosphere has profound implications for the evolution of the ozonosphere and the extent of cloud cover globally.

FACTORS AFFECTING THE TEMPERATURE PROFILE OF THE SOUTHERN STRATOSPHERE LATERALLY AT 10hPa.

All the remarks under this head address what can be observed in the diagram immediately below. Please give it your closest inspection.

Temp at 10hPa over Antarctica

Source: http://www.cpc.ncep.noaa.gov/products/stratosphere/polar/polar.shtml

The temperature profile at 10 hPa that is mapped above exhibits differences in the evolution of temperature between the hemispheres. This has nothing to do with the sun or short wave solar radiation. Air temperature varies with the place that the air comes from and the upper atmosphere is an active rather than a passive medium. Cooling in high latitudes in winter represents a regime of supercooling that is completely unrelated to the progress of the temperature at the surface. This supercooling is the thermal consequence of the penetration of the  polar stratosphere by very cold, ozone deficient air that originates in the mesosphere. When mesospheric air is present, temperature plummets and when it is not present the space hitherto temporarily occupied is taken by warmer, ozone rich air that is immediately adjacent. That pattern of arrival and departure is mapped in shades of blue and green above. By virtue of the erosive effect of NOx compounds present in mesospheric air the ozone content of the wider atmosphere is much affected as mesospheric air is inevitably mixed into the wider atmosphere. It is obvious from the diagram above that this has knock on consequences over a very wide latitude band. Mixing processes speedily  impact the evolution of ozone partial pressure and temperature at lower latitudes and especially so in the northern hemisphere where a prevailingly slight presence of mesospheric air enables a regime of high ozone partial pressure and elevated temperature to prevail. In this regime, small additions of mesospheric air to the melting pot result in widespread change.

The temperature of the stratosphere is a function of the extent of the heating by short wave radiation from above, long wave infra-red from the Earth itself and the dynamics of the movement of the atmosphere affecting the extent of the presence of mesospheric air. Atmospheric dynamics vary strongly with latitude.

The chief absorbers of outgoing infra-red radiation from the Earth are water vapour, of which there is little in the stratosphere, carbon dioxide, that is uniformly distributed and therefore of little account as far as surface pressure is concerned and ozone that is much affected in its concentration by the impact of photolysis. In addition the presence of NOx that catalyses the destruction of ozone affects ozone partial pressure as NOx is rapidly spread across the stratosphere.

Heating by short wave incoming radiation is the dominant influence on the temperature of the stratosphere above 10 hPa affecting the most elevated 1% of the atmospheric column by weight. Long wave infra-red radiation from the Earth drives the warming of the stratosphere very broadly between about 300 hPa and 10 hPa, although the lower fuzzy margin is higher at the equator and lower in high latitudes. The lower fuzzy margin corresponds with the tropopause near the equator but nowhere else. Outside near equatorial latitudes, as the air increasingly dries, the forces responsible for the cold point at the tropical tropopause wither away and the descent of cold mesospheric air at the pole in winter moves the cold point upwards towards 10 hPa. This divorces the cold point from any association with ozone distribution or the distribution of water vapour and the notion of a ‘tropopause’ that happens to be conjunction-al with the cold point and the presence of very dry air in low latitudes. It is only conjunction-al in low latitudes because massive continuing uplift keeps ozone aloft. The notion of a tropopause has no meaning, and is therefore un-locatable in mid or high latitudes.

Marked differences in ozone partial pressure give rise to a very different stratosphere between winter and summer. This reflects the presence of mesospheric air and enhanced O3 in high latitudes in winter.

The pressure of photolysis on ozone diminishes as the path through the atmosphere lengthens accounting for a natural increase in ozone partial pressure with latitude and more so in winter. This sets the background level of ozone according to latitude, less at the equator and more ozone closer to the poles. But it is over the polar caps that mesospheric air establishes its presence interfering with the aforesaid pattern and via its interaction eroding ozone partial pressure throughout the stratosphere.

To reiterate and expand: The impact of NOx from the mesosphere occurs via a tongue of mesospheric air that enters the stratosphere in winter. Entry is facilitated via an increase in the velocity and mass involved in the overturning circulation driven by ozone in high latitudes (forming Polar Cyclones). Descent that represents the return arm of this circulation occurs at the pole and in the mid latitudes. Ascent involving that part of the column containing ozone occurs in an ‘annular ring’ that is most intense at 60-70° of latitude and descent is apparent at 20-40° of latitude especially over cold waters on the Eastern side of the major oceans. The latter constitutes the corresponding ring like mode of descent in the mid latitudes. Because the circumference of the Earth is so much greater in the mid latitudes than it is over the polar cap the overturning circulation heads in this direction, the line of least resistance, rather than towards the polar cap. Descent over the polar cap is by comparison almost a stalled circulation in the sense that the rate of descent is very slow. If it were fast and continuous we would have much less ozone in the southern hemisphere than we do currently. The southern hemisphere would become almost uninhabitable. Fortunately for the inhabitants of the Southern Hemisphere NOx rich air from the mesosphere enters the wider stratosphere at a much slower and intermittent rate across the leaky polar vortex and is replaced from above. However there is one part of the southern hemisphere where the mesospheric air tends to lean northwards and that is towards the continent of south America. In the high Andes where elevation enhances exposure to UV light, the suicide rate peaks in spring.

The rate of descent of mesospheric air, the surface area of the interaction zone, its depth of penetration and impact on the wider stratosphere across the entire globe is surface pressure dependent. The landmass of south America interrupts the formation of polar cyclones. Zones of very high surface pressure form to the East and west of the continent in the mid and high latitudes associated with the presence of very cold oceans. The tongue of mesospheric air expands in its volume as surface pressure increases over the polar cap. Surface atmospheric pressure at the pole is to some extent just a proxy for the rate of overturning of the ozone driven circulation in high latitudes and to the remaining extent a proxy for the tendency of the atmosphere to be shifted equator-wards under the impact of geomagnetic pressure wrought by the solar wind. In the long term the latter determines the issue driving ozone partial pressure one way or the other and with it surface pressure over the polar cap and in the mid altitudes. Hence the relentless loss of mass since 1948.

It is important to realize that infrared emission from the Earth is never limiting, even at the highest latitudes. That stream of energy that is available both day and night and at all levels of the atmosphere. Ozone absorbs at 9-10 µm in the peak of the energy spectrum emitted by the Earth. Ozone is most enhanced between 30 hPa and 10 hPa shading away in concentration to the limits of the mesosphere on the one hand and downwards into the lower atmosphere to an altitude that varies with latitude on the other. Because the energy flow from the Earth is inexhaustible in terms of the amount intercepted by ozone there is little difference in the temperature of the stratosphere between day and night. This is a very different situation to that at the surface where short wave energy from the sun heats only during the daylight hours and wide diurnal fluctuations in temperature are the rule. If you read that the temperature of the stratosphere is the result of the interception of of short wave radiation by the atmosphere check the credentials of the author of that statement, even though he is a co-author or even a chairman of the committees responsible for UNIPCC reports. That author is not getting to grips with the nature of the ozonosphere.

As already mentioned geography ensures that the cooling in the stratosphere over the Antarctic during the polar night is much enhanced by comparison with the Arctic. The Antarctic at 1 hPa is slightly warmer in summer due to orbital influences. The massive annual range of temperature over Antarctica due to the depression of the winter minimum is anomalous because, at the surface, it is the northern hemisphere that exhibits the greatest swing between summer and winter.   This enhanced range is mainly the result of the presence of very cold mesospheric air over the Antarctic pole in winter and its relative exclusion between December and March.

The relative absence of cold mesospheric air in southern spring of recent times has resulted in a marked increase in the temperature of the polar cap and the intensification of the southern circulation. This trend is related to the 15 hPa fall in surface pressure over Antarctica since 1948.  The decline very likely began at the turn of the nineteenth century. The process of withdrawal of mesospheric air was already well under-way in the 1940’s.  To some extent the warming of the polar cap between 65-90° of latitude is due to a narrowing of the tongue of mesospheric air due in turn to enhanced uplift closer to the margins of Antarctica as the air that is external to the vortex becomes warmer in late winter and spring, reflecting its increased ozone content. In this way atmospheric dynamics drive ozone content and the extent of the ‘ozone hole’ over Antarctica. That hole was present at the time of the earliest measurements of total column ozone by Dobson’s colleagues at the British Antarctic base situated in Halley Bay in 1956, astounding Dobson and leading him to question the validity of the measurement. It was not what was expected given the pattern that he had observed in the Northern Hemisphere. The Antarctic ‘hole’ disappeared in November at that time as it does today. Measurements of total column ozone in the following year confirmed that it was the stratosphere and not the instrument that was responsible for the difference. Students of history will remember that the use of Freon in air conditioning and domestic refrigeration only really got going in the post WW2 era.

The anomalous warming of the Antarctic stratosphere that shows up between October and December in the data for 2014 in the diagram above is a function of the sustained ozone content of the air after the period of the polar night and despite the growing impact of photolyzing solar radiation as the sun rises higher into the sky and the atmospheric path shortens. Plainly it is the rate and the extent of the descent of mesospheric air that rules the temperature regime over the Antarctic polar cap rather than the angle of the sun.

By comparison the descent of mesospheric air in the Arctic comes in fits and starts allowing the northern hemisphere to maintain a much enhanced level of ozone in the stratosphere.

Again, looking at the diagram above, the temperature of the entire stratosphere is much affected by short term dynamical processes that manifest in the Arctic in winter. The descent of mesospheric air over the Arctic polar cap has knock on effects across a very wide band of latitudes. In terms of timing, the plethora of warming events in the Arctic has a life that is independent of the march of the sun. Again, it is the dynamics within the atmosphere that determine the pattern of evolution of temperature in the Arctic.

THE VERTICAL PROFILE IN THE  TEMPERATURE OF THE ATMOSPHERE

Gordon Dobson who invented and built a spectrophotometer to measure the quantity of ozone in the atmospheric column according to the attenuation in the energy at the wave length that destroys it (and is partially used up in the process) observed that ozone affects the upper troposphere:

The chief result of these measurements at Arosa  (1932 Swizerland 46.78° N) was to show with certainty that the average height of the ozone in the atmosphere was about 22 km and not about 40-50 km as had been thought before. They also gave a fair idea of the vertical distribution, showing that the main changes took place at heights between 10 km and 25 km. This made it much easier to understand why changes in the total amount of ozone should be so closely correlated with conditions in the upper troposphere and lower stratosphere.

hPa Km
850 1
700 2.5
600 3.5
500 5.0
400 6.5
300 8
200 11.0
150 12.5
100 15
30 23
10 30
1 45

We may think it strange that Dobson writes about the presence of ozone affecting the upper troposphere because it is often (always) assumed that the quantity involved is immaterial. But, in fact the issue as to whether ozone is present at 10 km in the mid latitudes or not, and of significance to weather and climate, is worthy of close examination. Is the boundary between the ozonosphere and the lower atmosphere actually fuzzy?

The French balloonist deBort  had actually settled the issue at the turn of the 19th century when he observed that the ‘isothermal layer’ as he called it was encountered at  9-10km when surface pressure was low and at 12.5 km when it was high but let us not take too much account of that. He is French and we are British….and the message got awfully rusty in the effluxion of time…or did we simply regard him as a crank.

A simple method of ascertaining where ozone begins to affect the temperature of the atmosphere is to inspect the rate at which temperature falls with elevation. The rate of change of temperature with elevation is affected by the release of latent heat (predominantly a near surface phenomenon) and the presence of ozone (an upper air phenomenon), both reducing the lapse rate. In parts unaffected by precipitation or ozone heating the decline of temperature with elevation should be the dry adiabatic lapse rate of about 10°C per 1000 metres. As ozone begins to affect the temperature of the air the lapse rate should immediately fall below the dry adiabatic lapse rate…..or whatever the rate has been to that point of elevation.

At any concentration above zero ozone has the ability to raise the temperature of the air via absorption of long wave energy from the Earth and the instantaneous transfer of this energy to surrounding molecules.  At 30 hPa where the ratio between ozone and other atmospheric constituents is greatest the actual ozone content is only about 30 parts per million, well below the concentration of CO2 at 400 parts per million. But, by virtue of its uneven distribution it is responsible for the stratosphere. Strangely, when we inspect the curves there is no evidence that down radiation from an ozone rich layer causes an increase in the temperature of the air below…..but that is an entirely different type of investigation that should not distract you or me at the moment.

In an effort to locate the effective starting elevation of the stratosphere the thermal profile of the atmosphere will be mapped in 10° latitude bands between the inter-tropical convergence zone just north of the equator and the southern pole. The data is for the year 2014 available in the database that can be accessed at: http://www.esrl.noaa.gov/psd/cgi-bin/data/timeseries/timeseries1.pl  We can delve into the distant past later on.

The inter-tropical convergence
10N-0

Here the South East Trades meet the North East Trades and a line of tropical thunderstorms rings the globe, especially in the afternoon.

Because the horizontal scale is in pressure levels rather than metres the intervals on the horizontal axis are not constant. However the blue line indicates a lapse rate of 6.44°C per 1000 metres that is a true reflection of  the lapse rate between the surface and 600 hPa a distance of 3500 metres with the temperature falling 22.54°C over that interval. The red line represents a lapse rate of 6.86°C per 1000 metres that is  a true reflection of  that particular lapse rate between 300 hPa and 100 hPa where the temperature falls 48°C over 7000 metres. The dry rate of 10°C per 1000 metres can only be attained if there is a lack of warming from any source. The degree of uplift at the ITC and the presence of appreciable moisture can be assumed to reduce ozone to near zero levels below 100 hPa. Away from the ITC both uplift and moisture levels do fall away allowing ozone to penetrate below the 100 hPa pressure level and down to less than 10,000 metres in low pressure cells. Let us assume however that  ozone is not present unless the lapse rate falls below 6.86°c per 1000 metres, the slope of the red line. That is the conservative approach.

Both the blue and the red lines have the same slope in all diagrams that follow. All the diagrams have a common vertical and horizontal scale so that the slope of the blue and red lines is invariable.

There is a cold trap (about -80°C) at 100 hPa that is said to promote a dry atmosphere above this pressure level. In practice clouds do manifest in the lower stratosphere, particularly in the region of the south East Asian warm pool.  A high rate of uplift results in he sudden appearance of ozone above 100 hPa and a steep increase in temperature above that pressure level. At 100 hPa only 10% of the atmosphere by weight lies above while 90% is below.  In terms of distance there is 15 km of atmosphere below and another 15 km to get to the 10 hPa pressure level so the graph exaggerates the rate of increase in temperature with altitude above the tropopause.

At no other latitude do we see as steep an increase in temperature in the stratosphere. At no other latitude is the stratosphere as elevated at its inception.

At the poles in winter the temperature of the air falls to minus 85°C. Convection over the inter-tropical convergence keeps ozone so much at bay as to produce exactly the same temperature, -85°C at 15 km in elevation.

Notice that the month to month variation in the temperature of the stratosphere over the I.T.C. at 100 hPa and higher is greater than is seen in the troposphere below.  At 100 hPa temperature is depressed in December and elevated in August when ozone partial pressure increases strongly outside the margins of the Antarctic polar vortex. This testifies to the vigour of mixing processes in the stratosphere.

Equator to 10° south

0-10S

Between the equator and 10° south latitude the thermal structure of the atmosphere is very similar to that at the inter-tropical convergence.

10-20° south

10-20S

At 10-20° south latitude a slight reduction in the lapse rate above 300 hPa indicates the presence of ozone in the atmospheric profile.

A temperature of about minus 30°C at 300 hPa is common to latitudes below 20°.

At 100 hPa temperature is warmer by a few degrees than at the I.T.C. The black dotted line has a common length in all diagrams. The minimum or ‘cold point’ warms as latitude increases reflecting an increase in the ozone content of the air with increasing latitude.

20-30° south

20-30S

At 20-30° south latitude where high surface pressure is the rule, the presence of ozone appreciably reduces the lapse rate above 300 hPa. At 300 hPa the atmosphere is slightly cooler than it is in the tropics.

The temperature at 100 hPa is warmer than in the tropics indicating more  ozone in the air at 100 hPa.

Between the months of August and November in late winter and spring, the ‘cold trap’ and the stratosphere in general is warmer than it is in summer indicating enhanced descent of ozone in high pressure cells at the particular time of the year when ozone partial pressure peaks outside the margins of the Antarctic polar vortex driving a shift of atmospheric mass away from the poles and towards these latitudes. An enhanced rate of descent from the stratosphere brings ozone into what has been hitherto regarded as the ‘troposphere’. If the word troposphere is intended to indicate the absence of ozone to the point where the lapse rate is unaffected then plainly we have a dilemma. The terminology is no longer appropriate to circumstances at this latitude and even less so in higher latitudes. This dilemma can be avoided if the term ‘troposphere’ is  used in reference to truly tropical latitudes and the word ozonosphere is used to indicate air that is warmed by ozone, at this latitude well below the cold point from about 300 hPa or eight kilometres in elevation, less again in zones of low surface pressure. What we have here is data for the average of high and low pressure cells at this latitude.

By virtue of its effect on cloud cover the relatively amplified increase in temperature aloft drives temperature variations at the surface. The mechanism behind the relationship between increased surface pressure anomalous warming at the surface is described in terms of anomalous increases in geopotential height and surface temperature in chapter 3 entitled ‘How the Earth warms and cools naturally’.

30-40° south30-40S

At 30-40° south latitude the presence of ozone markedly reduces the lapse rate of temperature with elevation above the 300 hPa pressure level.

40-50° south40-50S

At 40-50° south latitude the temperature of the ozonosphere at 100 hPa is considerably warmer than at lower latitudes and particularly so in winter.

The temperature at 300 hPa is very little different between 40-50° of latitude and 70-80° of latitude despite cooling at surface with increasing latitude indicating that this is indeed part of the ozonosphere. This warming occurs in the absence of mesospheric air in the summer season and more so in winter when cold mesospheric air is present. However there is obvious cooling of the ozonosphere above 100 hPa due to the influence of mesospheric air in winter the depression of air temperature increasing with elevation. Looking back we see that this trend emerged at 30-40° south latitude. The mechanism by which mesospheric air reduces the temperature of the ozonosphere beyond the margins of the polar vortex that is traditionally seen as containing it (cannot get out), involves both mixing and the chemical erosion of ozone by NOx. This process is fundamental to the long term evolution of ozone partial pressure in the ozonosphere and the temperature at the surface of the planet because it affects the Earth’s cloud albedo. It is the diminution of the flow of mesospheric air over time that has allowed ozone partial pressure to build in high southern latitudes and with it surface temperature and the volume of energy stored in the global oceans. The build in ozone partial pressure has produced a dramatic fall in surface pressure in high latitudes and a less dramatic but highly influential increase in surface pressure and energy gain in the mid latitudes.

The containment of mesospheric air within the polar vortex is an essential requirement if the Earth system is to be entirely self contained and free of influences from our highly variable local star….the sun. Certain people who wish to drive a political agenda will hang on to that notion like a dog with a bone. These people will not want to know about stratospheric processes.

At 40-50° south ozone drives a halving of the lapse rate above 300 hPa and a 10° C increase in the temperature of the cold point by comparison with latitudes only 10° closer to the equator. The lapse rate is particularly curtailed and the temperature of the cold point is particularly affected in the winter/spring period. Temperature above 300 hPa plainly relates more to polar atmospheric processes than surface temperature at this latitude.

So far as the use of the term ‘tropopause’ is concerned we must note that the ‘cold trap’ is unequivocally located in the stratosphere and is further elevated in late winter–spring (reduced descent of mesospheric air). It is warmer in winter than in summer. It is no indication of a ‘boundary’ between spheres of interest climatically. That ‘boundary’ is now to practical intents and purposes  at 300 hPa and the cold point will be lower when surface pressure is lower, as observed by the French balloonist Debort who discovered ‘the stratosphere’ in the 1890’s.  The notion of a ‘tropopause’ is devoid of content in defining the character of the atmosphere in mid latitudes and should be abandoned. The use of the term is rooted in a failure to observe the dynamics that determine the thermal structure of the atmosphere and the origins of the surface pressure regime. We abandoned the use of the term ‘isothermal layer’ as a description of the stratosphere when we found that it is by no means equal and we should abandon the use of the term tropopause and troposphere when we refer the atmosphere outside the tropics. These terms mislead and result in sloppy thinking.

At 40-50° south latitude the marked variation in the temperature of the stratosphere at 10 hPa across the year reflects the impact of the pulse in ozone partial pressure outside the polar vortex where 10 hPa temperature rises quickly to be very close to its annual peak and surface pressure falls to its annual minimum in September-October.

Seventy percent of the depth of the atmospheric column lies above the 300 hPa level at this latitude. It stretches between 8 and 30 km in elevation.

Warmer temperature in the lower stratosphere between June and October is the product of the increase in ozone partial pressure across mid and high southern latitudes in late winter-spring.   Mass transfer from the summer hemisphere and the high latitudes enhances surface pressure in the mid latitudes of the southern hemisphere in winter. The transfer of mass from high latitudes involves enhanced uplift due to ozone heating affecting the entire atmospheric column. That which ascends must descend and it does so in the mid latitudes. The rate of descent and the surface area of descending air is simply a function of the dynamics of ascent in the near polar atmosphere. Again we see a dynamic affecting the Earth’s albedo, stronger at this latitude than at 30-40° south latitude.

50-60° south

50-60S

At 50-60° south we enter the domain of the ozonosphere proper. The lapse rate is diminished above 500 hPa due to appreciable ozone in the upper half of the atmospheric column.  Regional density differences in the stratosphere promote strong uplift. This is the domain of the Polar cyclone that is generated  between 50 and 70° south.  The ozonosphere drives cyclogenesis, the distribution of atmospheric mass, short and long term weather variations and the evolution of the planetary winds. The notion that the ‘troposphere’ is the ‘weather-sphere’ at these latitudes is silly. None of the circumstances that give this term relevance  in the tropics apply at 50-60° south. The surface itself is very cold. The near surface atmosphere is cold and dry. Cloud is associated with uplift at the junction of warm wet and cold dry air masses. Convection originates in the ozonosphere by virtue of the behaviour of ozone as a greenhouse gas. Heating is then assisted by the release of latent heat associated with frontal activity. Cyclones move equator-wards tending to maintain the distinctive differences that maintain their vorticity until they run out of ozone aloft and moisture below.

The ‘cold point’ that is named the ‘tropopause’ in low latitudes is located within the stratosphere in all months. In June it is found above 10 hPa. As an indicator of the ceiling for convection due to the release of latent heat of condensation it is irrelevant. Wet air never reaches this altitude. The cold point is much warmer than it is in the tropics. The air is very much drier in high latitudes and precipitation is consequently light. But the elevation of the cold point materially assists the process of convection whereby lower density air is squeezed upwards. Convection affects the entire atmospheric column rather than being confined to the atmosphere near the surface. At latitudes pole-wards of 50° south we find the true weather-sphere,. This is the domain of the roaring forties the furious fifties and the screaming sixties. The enormous forces operating aloft are muted at the surface but still rock us back on our heels.

Polar cyclones owe their origin to heating of the atmospheric column by ozone. Heating occurs at all elevations where ozone is found, both above and below the cold point. This heating is driven by long wave infra-red emissions by the Earth itself varying little between day and night, and via energy redistributed polewards by the oceans and the atmosphere so that outgoing radiation has a pattern of annual variation  much less extreme than the variation in the energy supplied in the form of short wave radiation from the sun.

In mid and high latitudes the Earth starts to act like a battery for energy storage and energy supply to the atmosphere at a relatively invariable rate. This energy performs work via the agency of ozone. That work is weather change if we are talking of short term effects and ‘climate change’ in the longer term. The stratosphere is now the ‘weather sphere’ because this is where weather is generated. The partial pressure of ozone evolves on very long time scales.

In climatology as presently taught, what happens in the lower half drives the upper half. Motions in the lower atmosphere condition the distribution of ozone in the stratosphere. This doctrine is absurd. People refer to a coupling process between the troposphere and the stratosphere. What troposphere would that be?

60-70° south60-70S

At 60-70° south latitude, the lapse rate is reduced below and above 500 hPa and we have a very warm cold point in summer and a cold point in winter that approaches the temperature of the mesosphere to which it is proximate. The temperature of the ozonosphere declines in winter due to the influence of mesospheric air that descends inside the polar vortex over the Antarctic continent. Ozone partial pressure increases strongly outside the margins of the polar vortex but the temperature of the air still falls away at 60-70° of latitude in winter.  The nature of the mesospheric air,  the variation in the exposed surface of this tongue of air and the interaction of this air with that in the ozone rich stratosphere determines the evolution of ozone partial pressure in the wider stratosphere in a process unrecognised in ‘climate science’. The tongue of mesospheric air is continually being abraded by a Jet Stream at the polar vortex and large portions escape beyond the margins of the vortex to be gradually absorbed into the ozone rich surrounding atmosphere. Jet streams are wavy discontinuous phenomena and the notion that this air is confined behind some sort of wall is …., not to put too fine a point on it, akin to a fairy tale.

The temperature  at 10 hPa rises quickly from July to be very close to its annual peak by October-November, well before midsummer. Ozone partial pressure outside the polar vortex peaks in October as the tongue of mesospheric air retracts in Spring. This is in part a function of change in surface pressure as atmospheric mass swings back to the now swiftly cooling northern hemisphere. The resulting very late accumulation of ozone despite the fact that the pole is now in full sunlight brings the temperature peak forward in time so that it is only loosely related to the angle of incidence of the sun. See the diagram below for the annual evolution of 10 hPa temperature according to latitude. This diagram represents a 1948-2014 average and conceals change that has brought the temperature peak forward over time, the subject of later chapters.

10hPa T by Lat

The accumulation of ozone in the atmosphere outside the polar vortex from mid winter through till the spring equinox relates to a diminishing influence of the tongue of mesospheric air over the pole at this time of year and the consequent enhancement of ozone partial pressure outside the vortex. As ozone partial pressure peaks the vorticity of the overturning circulation brings raw mesospheric air deeply into the lower stratosphere and an ozone hole manifests, in truth it has been growing in size since March but at this time of the year it is squeezed into a narrower profile.  This is veritably the hole in the donut. Those who talk ‘hole’ seem to be blind to the substantial donut that surrounds it. They have little appreciation of atmospheric dynamics in high latitudes. Chemists need training in atmospheric dynamics if they are to be relevant and helpful so that they avoid the unpleasantness involved in offering themselves as unwitting shills to environmental activists.

Heating of the atmospheric column by ozone results in a planetary low in surface pressure at 60-70°south latitude that is present in all months but most extreme in September/October (see below). There is no counterpart to this in the northern hemisphere, just patches of low surface pressure over bodies of water over a broad range of latitudes. Observe that all the surface heating and the release of latent heat in near equatorial latitudes is incapable of driving surface pressure to the lows seen in the high latitudes of the northern hemisphere, let alone the extreme pressure deficit seen on the margins of Antarctica. It is not the Hadley cell that drives the atmospheric circulation, it is not the heating and uplift in the tropics, it is heating by ozone in high southern latitudes.  Hadley cell dynamics are determined according to the extent of atmospheric shifts from high latitudes because the Hadley cell expands with surface pressure. The ring like modes that characterise atmospheric shifts are a response to the distribution of ozone in high latitudes. The mechanics of the global circulation is driven not from the equator but from the poles and the Antarctic pole in particular. This is the reason why this chapter focusses on the southern hemisphere.

OCT SLP

Source: http://ds.data.jma.go.jp/gmd/jra/jra25_atlas/eng/indexe_surface11.htm

As noted repeatedly, the depression of the temperature of the ozonosphere over the pole in winter is due to the descent of very cold, relatively ozone deficient air from the mesosphere. This air is mixed into the mid latitude flow on the margins of the polar vortex by what is referred to as the Jet Stream that pares away at the margins of the tongue of mesospheric air. There is a knock on effect via chemical erosion of ozone by NOx species (NO, NO2) from the mesosphere. It is at 60-70° south latitude that the interaction primarily occurs. That interaction is the engine room of climate change.

70-80° south
70-80S

At 70-80° of latitude the near surface air is warmer than the surface itself. Its warmth is due to transport from warmer latitudes by the westerlies and the presence of ozone throughout the profile. Slow descent is the order of movement within the atmospheric column enhanced  in the winter, when surface pressure is high and retarded or stalled completely when it is low. The lapse rate above 850 hPa is considerably flattened and in this cold desert with sparse precipitation there is little release of latent heat to contribute to that flattening. Ozone is present throughout the profile.

Practically speaking the entire profile is part of the ‘ozonosphere’ that continues into the mesosphere. Atmospheric dynamics are not related to the coupling of something that exist with  a mental construct that is locally irrelevant.

It is sometimes remarked that we do not understand the coupling of the troposphere and the stratosphere in high latitudes. I have a large dam on my property in which I swim. I have looked intensively for a Bunyip without success. We can give up looking for a tropopause in high latitudes. It’s not a favourable environment for that beast. Its far too cold and dry.

Winter air temperatures are markedly affected by the descent of very cold air from the mesosphere that operates to a schedule unrelated to the march of the sun or the duration of the polar night that runs from March 21st through to September 21st. The schedule is much affected by the overturning of the atmospheric column at and beyond the polar vortex. This phenomenon is driven by the ozone content of the air.

The cooling due to the descent of mesospheric air is episodic as is evident in the diagram below. The flip side of that coin is called a sudden stratospheric warming.  A warming occurs when surface pressure falls away, the tongue of mesospheric air retracts and the space that it formerly occupied is taken by ozone rich air. The polar vortex and the jet stream contract towards the pole, the westerlies stream further polewards and high latitudes warm accordingly. This is the ‘Arctic Oscillation/ Northern Annular Mode/Atlantic Oscillation or the SAM’ in action. Meteorologists however, with their noses very close to their weather maps, converse together talking about the waviness of the jet stream, the incidence of so called blocking events and Arctic outbreaks.60-90T

Source:http://www.cpc.ncep.noaa.gov/products/stratosphere/strat-trop/

80-90° south

80-90S

At 80-90° south the main dynamic affecting the temperature of the atmospheric column is the variable presence of very cold, ozone deficient air descending from the mesosphere. At this latitude it is the interaction between the mesosphere and the stratosphere and whether the air is descending or ascending that determines the temperature profile from the surface upwards.  December is the warmest month at 10 hPa due to relatively enhanced ozone in high latitudes, a near static atmospheric column gently ascending and the relative proximity of the sun bringing a 6% increase in solar irradiance by comparison with July.  There is a reversal of the circulation at 10 hPa in late December as the descent of mesospheric air finally stalls.  The cessation of a regime of vigorous interaction with mesospheric air results in a relatively invariable temperature regime from 100 hPa through to 10 hPa.  In November, very regularly from one year to the next, as the Antarctic closes up shop, the action centre shifts to the Arctic.

Enhanced descent of the atmospheric column containing ozone warms at the 600 hPa pressure level, particularly in winter/spring the cycle in temperature at this level influenced by descent rates, penetration ratios and the flux in ozone partial pressure.

At 300 hPa the Antarctic stratosphere is warmest in February reflecting enhanced long wave radiation and the temporary absence of mesospheric air from the circulation until it enters again, in March. Accordingly, the range of temperature is minimal at all levels above 300 hPa between February and March (see below).

At 850 hPa  the temperature peak is in January driven by the march of the sun.

It is plain that other than quite close to the surface, the forces responsible for temperature and ozone content of the upper and lower portions of the atmosphere are very different.

Back in the 1940s the Antarctic ozonosphere used to be conditioned by the presence of a tongue of mesospheric air throughout the year. At that time 10 hPa temperature was very much cooler than it is today.1hPa T variability10hPa variability in T

30hPa T variability

Inspecting the three diagrams above, we can infer that variability increases the closer one gets to the mesosphere. It is mesospheric air that is the source of that variability and it dances to the tune of surface pressure variation, a good indicator of the vorticity of the overturning, ozone driven circulation.

CLIMATE CHANGE10hPa T 1998 on

Change in the rate of uplift in the stratosphere (and descent from the mesosphere) associated with ozone heating outside the margins of the polar vortex occurs on all time scales but is most active in the month of July and August as is apparent above. It is at this time of the year that the interaction between the stratosphere and mesosphere over the Antarctic pole is most variable. The decline in the temperature of the Antarctic stratosphere at 10 hPa since 1998 indicates that mesospheric air is driving down the ozone content and the temperature of the ozonosphere at 10 hPa over time. This heralds cooling. An Earth system that is already on the cool side will become colder. Fortunately, mankind has many tools at his disposal to survive and prosper in adverse circumstances. Clothing helps. Warm slippers and thick socks keep the toes warm and we have a good supply of cheap fuel to keep interior of our shelters warm. In the absence of viable battery storage storable fuel needs to be available both day and night, when the sun does not shine and the wind does not blow. There is no need to fast track so called renewable energy technologies with massive subsidies at the taxpayers expense. There is no ‘carbon pollution’ problem. We are in a regime of carbon enrichment that will serve all species well, including the polar bears that will find more to eat in summer but will unfortunately have to go hungry for a longer period in winter.

A note for theorists: The temperature of the stratosphere at 10 hPa cannot vary on the time schedule and in the manner seen in the last graph according to internally generated ‘planetary waves’.  That is a logical absurdity. Yes, waves there are, but in terms of modes of causation for the temperature of the stratosphere, look elsewhere. Bottom up thinking represents a failure to grasp the reality of ozone flux over time and its relationship with surface pressure, an inability to appreciate the factors responsible for the increase in ozone partial pressure in winter and factors responsible for the variability in incursions of mesospheric air. It represents an inability to grasp the importance of NOx in mesospheric air, the dynamics behind the jet stream and the origins of the ‘ozone hole’. Bottom up thinking makes it absolutely impossible to grasp the cause of the ‘annular mode’ phenomenon. It makes it impossible to appreciate the fact that the planetary winds evolve on all time scales changing the basic parameters of the climate system. Above all, bottom up thinking makes it impossible to model the atmosphere numerically. It dooms us to failure. It opens us up to superstition and exploitation. In general, it’s a disaster. Climate change is manifestly ‘top down’.

2014 is not a typical year. Every year is different. The geography of the stratosphere evolves over time. As we will see the influence of the stratosphere is indelibly imprinted on the surface temperature record.