The linkage between cloud cover, surface pressure and temperature

For the albedo data in this presentation I am indebted to Zoe Phin at. As per usual the temperature data comes from:

Atmospheric albedo is due to particles that reflect visible wave lengths in the spectrum of light emitted by the Sun. This reduces the light that reaches the surface of the planet. Reflection in the atmosphere is due to cloud, and my gut feeling is that the strongest variability will be in the cloud that is in the form of multi branching crystals of ice that create a large surface area in relation to their mass. With a lapse rate of 6.5°C per kilometer, the elevation required to form ice cloud is no more than 3 km over the bulk of the planet and 5 km at the equator. Much ice cloud is seen to be stratified due to localized cooling at a high altitude. With 90% of the atmosphere below 10 km in elevation and ice cloud extending into the stratosphere, its obvious that albedo due to variation in ice cloud density might play a very important part in determining surface temperature. Orthodox climate science tells us that this cloud warms the surface by back radiation. I think differently. The higher the elevation of the cloud the more its density will vary according to the ozone and H2O content of the particular layer involved. And this type of cloud is always layered. It is estimated that about 90% of the albedo of the Earth is due to cloud. Surface features don’t get to play a big role due to the ubiquity of cloud. The question is, which sort of cloud plays what role.

Using satellite instruments that intercept light that is reflected, it has been possible, for more than twenty years, to document atmospheric albedo and chart its variation. So far as I am aware nobody has thought to juxtapose that data with surface temperature. Why? Because of the almost universal assumption that the temperature at the surface is determined by back radiation from the atmosphere, including from cloud, with ice cloud at a high altitude presumed to be partly responsible.

Albedo is measured as the proportion of solar radiation that is reflected towards space with no change in wave length. As we see above, there is a seasonal cycle.

Albedo is at its minimum in August and it peaks in December. The secondary hump in albedo between April and August is explained by the increase in cloud associated with the South and East Asian Monsoon. Eastern China receives about 60% of its rainfall between May and August. The Indian Monsoon is frequently initiated on 1st June. So there should be no doubt that albedo varies with cloud cover.

The data indicates that, between 28% and 31% of solar radiation fails to reach the surface according to the time of the year, due to reflection by atmospheric constituents.

Consider the following argument. As we see above, the temperature of the Earth peaks in July-August. This is coincident with albedo at minimum. The July-August peak in temperature is due to the evaporation of cloud as the land masses of the northern hemisphere heat the atmosphere, driving the dew point down and maintaining more water vapour in its invisible, non reflective, gaseous form. On a regional scale land returns energy to the atmosphere tending to clear the sky during the daylight hours but allowing cloud to return in the late afternoon and evening. Vegetation supplies moisture to maintain cloud so that a fence separating cleared land from native vegetation is frequently observed to be also a dividing line for cloud. So, we know that the supply of moisture and the extent of back radiation from the land surfaces play a big role in determining the presence of cloud. Globally, tropical rain forests in the Congo and the Amazon and across the ‘Maritime Continent’ are the chief sources of atmospheric moisture measured as Total Precipitable Water.

Solar irradiance is 6% weaker in July than in January due to orbital considerations. Now get this! Paradoxically, the temperature of the globe peaks when solar irradiance is weakest. A 5.7% decline in albedo between January and July compensates for the 6% deficit in solar radiation and on top of that, delivers the thumping 2.5°C benefit by comparison with the southern hemisphere. Obviously, this is a feedback driven process that relates to the distribution of land and sea.

This paradox is instructive. Take away the cloud and surface temperature increases. Put the cloud back, and the temperature plummets. Adding the cloud back negatively impacts the Southern Hemisphere in its summer giving rise to cooler temperatures at every latitude than is experienced in the same latitude in the northern hemisphere. The notion that cloud warms the surface via back radiation that is incorporated into the mathematical equations that constitute climate models is erroneous. Cloud normally comes in warm moist air from the equator. Perhaps that is the source of this error.

Over the sea, radiation goes straight into the receipts ledger of Earths energy budget because the sea is transparent. Radiation that falls on land tends to be returned to space with expedition. That is what a comparison of the temperature of the Northern versus the Southern Hemisphere demonstrates.

Its important to realise that any variation in albedo over the land starved Southern Hemisphere that occurs between July and April will be critical to the Earths energy budget.

We need to know what lies behind the variation in albedo including an answer to the ‘where and ‘why’ questions. We can begin with a study of variability by month of year.

The diagrams below are a simple method of assessing the nature of variability in albedo according to the month of the year.

Patently the variation in albedo is a cyclical phenomenon and we have to look for a mechanism to explain it. If we can not explain it and account for it properly we have no business attributing climate change to the works of man. or anything else for that matter.

The interpretation delivered below is based on the reality that the atmosphere of the Earth is in part ionized, especially so in winter and at solar minimum due to the impact of intergalactic cosmic rays. The atmosphere exists in a magnetic field that extends into Space that we call the Magnetosphere. The Earths magnetic field couples to the interplanetary magnetic field to the greatest extent in March and September when the axis of the Earths rotation is at right angles to the plane of it’s orbit.

First see diagram 3. Notice that the pattern in September is a mirror image of that in March. Its hard to make any sense of what’s happening as the Antarctic begins to dominate the evolution of the planetary winds, via its determination of the evolution of surface pressure, between April and August.

Close inspection reveals that the whole of period variation of albedo in October is greater than any other month. In figure 1 we see that the data for October is a mirror image of that in January.

September shifts the August pattern towards what it will become in October. In other words, October magnifies and exaggerates the nature of the variation in albedo that is initiated in September. In November and December, the October pattern is maintained but softened.

November is a very important month for climate. It is in November that the changeover occurs between the Antarctic and the Arctic in the phenomenon known as the final stratospheric warming. The high altitude circulation over the Antarctic changes from descent to ascent with a 180° swing in rotation from ‘west to east’, to ‘east to west’ with the summer rotation a pale version, in terms of the energy involved, of that in winter. With a cessation of descent associated with a fall in polar surface pressure, the temperature of the stratosphere warms to the point where, over Antarctica, it is commonly 20°C warmer at the stratopause than at the equator where the pressure of ionization is most severe. Patently, it is not ionization by solar energy that heats the stratosphere, it the absorption in the infrared by ozone. There is a less exaggerated variation of albedo in November. But, the pattern of variation in November is still like that in September. November albedo is a regular 9-10% increase on that in September. The Earth system is throwing up a cloud umbrella as the Earth gets closer to the sun and solar irradiance gets stronger.

The variation in January is a mirror image of that in December and the January pattern persists into February. The pattern in March is different to that in February, sometimes opposed. However, the disturbance seems to be temporary because the pattern in April reverts to the January-February type.

In September the organizing principle transitions to the form that persists between October and December.

March and September, the months where the Earths atmosphere couples most effectively with the Interplanetary magnetic field are diametrically opposed. It’s as if the atmosphere gets a jerk that temporarily disturbs its habits. The reversion from Arctic to Antarctic control of the global atmospheric circulation occurs in late March, muddying the impact of the coupling of the atmosphere with the interplanetary magnetic field at that time. The ionization of the Arctic atmosphere peaks in January rather than in March. In contrast, the September coupling occurs at a time of strong ionization, and a peak in ozone partial pressure. Ozone is not neutral, electrically speaking. The critical thing to remember is that, via this process the atmosphere is set up to rotate like an electric motor.

There has been a steep recovery in Albedo since 2019 in the months from September through to December. It’s plain that there is an organizing principle that lies behind the variability in albedo and it is very likely to be the response of the atmosphere to the interplanetary magnetic field. Just consider this. The atmosphere rotates in the same direction as the Earth, but faster. Those who are interested in this phenomenon talk about atmospheric angular momentum and a variation in ‘time of day’ that appears to correlate with changes in the planetary winds.

The connection with surface pressure

The flux of surface pressure in high latitudes. directly determines pressure in the mid latitudes in a manner described as the ‘Annular Modes’ phenomenon. Along the equator any increase in surface pressure in the south east of the Pacific Ocean is associated with a fall in temperature as cold water either upwells to the surface along the South American coast or upwells and is is transported westwards along the equator. Where waters are not affected by the mixing of cold with warm or warm with cold, surface temperature varies directly with surface pressure. Along the equator surface temperature rises as atmospheric pressure falls. Under a high pressure cell where the waters are not affected by mixing processes, as the surface pressure rises, so does the temperature of the water, due to a reduction in cloud albedo, exactly the opposite to what occurs at the equator. When this occurs over land, as in the northern hemisphere in summer the impact on surface temperature is immediate and strong. Over the sea, the impact is slight because the ocean absorbs energy to depth.

On a month by month basis surface pressure in the mid latitude high pressure cells of the southern hemisphere depends on pressure in the Aleutian Low and the Icelandic Low. When these cells are are active atmospheric mass accumulates in the high pressure cells of the mid latitudes of the Southern Hemisphere, especially that in the South East Pacific adjacent to Chile. Whereas the Antarctic trough is the background driver of surface pressure across the globe, the vigour of the Aleutian Low has a surprisingly generous impact on the high latitudes of the southern hemisphere between January and March. This directly impacts the ENSO phenomenon via a strengthening of the Trades.

Pressure is normally high in the southern high pressure cells in winter due to the pronounced heating of the northern hemisphere and enhanced polar cyclone activity in the Antarctic trough. This creates a wide zone in the mid latitudes where cloud albedo is naturally low. A strong Aleutian trough delivers strengthening trade winds in the Southern Hemisphere via a boost to the high surface pressure in the Chilean High. The loss of cloud albedo as these high pressure systems expand in surface area, creates a situation where temperature in the mid latitudes increases as it falls across the equator. The enhanced pressure differential between the Chilean High and the Maritime Continent, traditionally monitored by observing an increase in surface pressure in Tahiti against a relatively static pressure in Darwin drives the cooling along the equator. Paradoxically, La Nina is associated with almost invisible additions to the receipts ledger of the Earths energy budget, under the high pressure cells of the Southern Ocean, that is add odds with the evolution of tropical and global surface temperature.

In this way, the Southern Hemisphere is set up to either receive or to reject solar radiation as cloud cover is rapidly growing after the August minimum through to the December maximum. The Southern Hemisphere is mostly ocean and is known to transport energy to the northern Hemisphere, via the diversion of tropical waters northwards due to the arrangement of the land masses.

The diagram below indicates very little change in surface temperature in the southern hemisphere in December when the northern hemisphere is at its coldest and global albedo peaks. The consistent warmth of northern summer in the highest northern latitudes, is due to the invariable surface area of the continents that are responsible for reduction in albedo in mid year. But it is the Southern Hemisphere, picking up energy as the northern hemisphere cools in the last half of the year. that provides the warmth that lengthens the growing season in the northern hemisphere by elongating Summer and Autumn and rendering northern winter warmer than it otherwise would be. The ocean currents that provide this benefit are well known but the source of their variability has long been a matter of speculation.

It’s important to realize that this is a reversible process. Its entirely possible that an increase in albedo affecting the mid latitudes of the Southern Hemisphere will cut off the flow of energy from the southern to the northern hemisphere. Unless there is warming in Southern Hemisphere winter the Northern Hemisphere will see its supply of energy from the south cut off. The gain in temperature seen above, should not be taken for granted. It will not necessarily continue.

Polar regions have lost atmospheric mass over the last seven decades, piling it up most strongly in the mid latitudes. This is assisted by increased convection at the equator. Nothing that is inherent in the Earth system, defined to exclude the influence of the Interplanetary magnetic field, can explain this. The increase in pressure in the mid latitudes affects the differential pressure that drives the South East Trade winds initiated from May through to December and either building or falling away in Arctic winter according to the activity in the Aleutian Trough.

The differential pressure driving the North Westerly winds of the Southern Hemisphere is superior to that driving the Trades and has been increasing apace, over the last seventy years. The differential pressure driving the Westerlies peaks in the middle of winter as surface pressure is enhanced in the mid latitudes against a relatively invariable Circumpolar Antarctic Trough that maintains a resounding planetary low in surface pressure all year round. The increase in surface pressure in the mid latitudes opens an atmospheric window according to the area that exhibits high surface pressure and relatively clear skies. The Trades and the Westerlies come from the same source, the share going to east is unstable a possible subject for another post.

The initiator of variation in ENSO is the high latitude troughs in surface pressure in both hemispheres especially attached to the vigour of the Aleutian trough from October onwards through Southern Hemisphere summer. ENSO is not albedo neutral but the change occurs, not at the equator, but in the mid latitudes.

The movement on the center of convection across the Pacific is a consequence of an increase in the temperature of waters in the East of the Pacific ocean and of no great significance in itself. This is a booster rather than an initiator of the ENSO event. There is little variation in albedo attached to the movement in the centre of convection. The process is started and driven from high latitudes, background condition determined by the Antarctic trough and the month to month swings by the Aleutian Low.

The obvious thing to ask is: How does the variation albedo relate to global temperature?

In the diagrams below the albedo axis on the right, is inverted. As albedo falls away, temperature increases. The relationship is watertight. No other influence needs to be invoked other than ENSO which throws a spanner in the works unrelated to the underlying change in the Earths energy budget.

The relationship between global albedo and surface temperature is less disturbed by ENSO at 20-30S Latitude, the latitudes where the variation in albedo is likely to be directly related to change in surface pressure.

The tropics distort the evolution of global surface in a manner that is unrelated to albedo. Temperature increase in the tropics is important to the global statistic because the circumference of the Earth is greatest in low latitudes. However, tropical variability relates to a mixing phenomenon of cold with warm water that has little to do with albedo and the Earths energy budget. The temperature of the Eastern Pacific that is normally about 8°C degrees cooler than the waters in the West increases in the El Nino phase. But essentially the increase in the East brings temperature to the point where the difference between the East and the West is, for a brief interval, reduced, or eliminated. The result is a leap in global temperature when the high pressure cells in the mid latitudes are contracting and albedo is increasing.

See below

It follows that average global temperature is a not a good guide to the status of the Earths energy budget.

In high latitudes temperature is dependent, not on the ENSO phenomenon or even albedo, but rather the degree of penetration of flows of cold air originating from the Arctic and the Antarctic and that of warm air travelling pole-wards from the mid latitude highs towards the Polar Lows that bring these air masses together. The chief variable here is the surface area occupied by LOW PRESSURE cells (polar cyclones, extratropical cyclones) in high latitudes and the balance of pressure between source and sink with reversals a fact of life. The cooling of high latitudes in the southern hemisphere relates to this phenomenon. Variability in the polar lows occurs on very long time scales. Surface pressure on the margins of Antarctica has been falling for seventy years and the area affected by reduced surface pressure has expanded northwards, especially in winter.

At times when the interplanetary field is less disturbed by solar activity, as we have seen in the most recent solar cycle, large swings in albedo should be expected.


Land and sea surface temperature is very sensitive to albedo on all time scales. Variation in albedo, accounts for the change in surface temperature over the last 20 years, to the exclusion of any other mechanism.

This is a lesson in the the desirability of observation, measuring what is observed and making an effort to understand the mechanism responsible for change. The Arctic Oscillation is well correlated with geomagnetic activity. Shifts in atmospheric mass between the high and mid latitudes change the planetary winds and this is the prime source of change in weather and climate on inter-annual, and longer and decadal time scales. What has been lacking is a close observation of the mechanics of the circulation of the atmosphere in high latitudes in winter and its evolution over time, that is primarily determined in the stratosphere.

Ozone is a greenhouse gas too. There is less ozone than carbon dioxide. But there is enough ozone in the air to impart sufficient kinetic energy to all atmospheric constituents to reverse the lapse rate at the tropopause. The partial pressure of ozone increases in winter when the sun is low in the sky and the short wave radiation that splits the ozone molecule is attenuated. The Antarctic circumpolar trough, the Aleutian Low and the Icelandic Low are made up of one or more polar cyclones. These cyclones can elevate ozone to to the 1hPa pressure level. A polar cyclone that is due to absurdly steep density gradients in the lower stratosphere/upper troposphere, can propagate to the surface because, the surface is simply not very far away. It is in the stratosphere, at Jet stream altitudes, and in the vicinity of polar cyclones, that the climate engine can be found, driving the circulation of the atmosphere. If you are looking to find the engine of climate change at the equator or via ENSO it won’t be there.

What goes up must come down. It (ozone) comes down in the mid latitude high pressure cells that pay scant respect to mans conceptual differentiation between ‘troposphere’ and ‘stratosphere’. The importance of ozone is derived from the fact that it is the only greenhouse gas that is not uniformly distributed and secondly, the virtual absence of ozone in the very cold air descending over the Antarctic, and the Arctic when polar pressure is sufficiently high. The volume of descent of this very cold air is not as important as the maintenance of a steep gradient of temperature and density where the two air masses converge. The notion of a ‘Front’ where these air masses meet, is unphysical. The air rotates in what might be deceptively described as a ‘cold core’ polar cyclone’. In fact the warm core starts at about 500 hPa. There is no ‘troposphere’ at high latitudes. Tropospheric air re-enters high latitudes to establish an ‘ozone hole at Jet stream altitudes in spring. The air that is of tropospheric origin has a high NOx content. Its not there during the winter season.

The descent of ozone into the troposphere has implications for atmospheric albedo. The climate shift of 1978, evident in the evolution of tropical surface temperature in the diagram above, was due to a breakdown of the Antarctic circulation that delivered a steep increase in the temperature of the stratosphere and upper troposphere globally, a subject for another day.

It can be observed that a map of total column ozone is also a map of surface pressure. It is the kinetic energy acquired by ozone aloft that is responsible for low surface pressure. It is difference in near surface pressure that appears to drive the winds. But in a polar cyclone, air density gradients are at their steepest between 500 and 50 hPa, not at the surface. The driver is aloft, not at the surface.

Notions couched in terms of ‘forcings’ of surface temperature based on radiation theory pay no respect to the complexity of the atmosphere and cannot explain the evolution of surface temperature. CO2 has nothing to do with it whatsoever. There is virtue in the study of geography even though its very old fashioned. A study of the geography of the atmosphere is good to combine with a knowledge of the manner in which the temperature and density of the atmosphere has evolved over time, at each pressure level in all latitudes. The temperature of air depends upon where it comes from. That changes systematically over time and with it, albedo.

The parameters that are important to the determination of surface temperature evolve, as does everything in the natural world. The Earth is not an Island unto itself. Unless we identify the correct parameters and study the linkages, the climate system can’t be modelled. When humans pursue ideological objectives its quite common the see them rewrite science to suit their purpose. But, who in their right mind could ignore the importance of cloud as a determinant of surface temperature.

The immediate future

This data above indicates that the change each months data from one year to the next is systematic and progressive, even in the space of 20 years. The ‘clumping’ of several months together all moving in the same direction occurs in the low points of solar cycles. We can see that over the last twenty years the tendency for the variation in albedo between months to be self cancelling, is diminishing. The recent tendency for more grouping in the last half of the year has produced wide swings in surface temperature that are independent of the ENSO phenomenon, affecting the mid and high latitudes rather than the tropics. This week Melbourne experienced its coldest, temperature on record. Some parts of Victoria received half their annual rainfall in two days. Swings to extremes are to be expected when the interplanetary magnetic field is least disturbed during solar minimum and during low magnitude solar cycles that are less disturbing of the interplanetary magnetic field.

The progression of change in March and September is worth examination:

The trend is for albedo to increase in October and for the swings to be wider since 2017. The situation in March is the opposite. The swing in October is more capable of changing the course of global temperatures than that in March. The trend in September-October has, in the past, been maintained through to December. These are important months for both hemispheres.

The big unknown is how the impact of a change in polarity of the Interplanetary Magnetic field, currently underway, impacts the system. Perhaps a person who knows more about electricity and magnetism than I do, can answer that question. Will the next solar cycle be stronger or weaker. If its the former, the Interplanetary magnetic field will be thrown into disarray and its impact on the atmosphere will not have a strong central tendency, to drive albedo either one way or the other.

My gut feeling is that the tendency for albedo to increase will not be turned around for a couple of solar cycles.


Ecclesiastes 1:6
The wind goeth toward the south, and turneth about unto the north; it whirleth about continually, and the wind returneth again according to his circuits.

This post revises key concepts that relate to the evolution of climate. Good teaching is about saying it again in slightly different ways until it sinks in. This caters for the students who can’t tune in at a particular time and many others whose perceptual frameworks are sort of ‘frozen’. Its also possible that the message can be delivered without the  necessary flair.

Knock-knock.  New idea. Fundamental to the nature of Earth is the difference between  the warmth of low latitudes and the cold of high latitudes.  Without the redistribution of energy by wind and water the extent of the habitable latitudes would be tiny. In the tropics there is little variation in the nature of the air from day to day. But in the mid and high latitudes change is the rule.  When the wind changes in a systematic fashion  to establish new states, we have climate change. The further we depart from the equator, the greater is the change that is experienced.

The air moves from zones of high to zones of low surface pressure. Pre-eminent in terms of low surface pressure is the Antarctic Circumpolar Trough. It is the zone coloured orange in figure 1.

Annual SLP
Figure 1

Kalnay et al’s reanalysis of 1996 to be found here. shows the evolution of surface pressure by latitude over time and is presented in a graphical format in figures 2 and 3.

July pressure
Figure 2.

January pressure
Figure 3

Plainly, the work that is done in redistributing energy across the latitudes is dependent on the evolution of surface pressure in the Antarctic Circumpolar trough and to a lesser extent the latitudes north of 50-60° north.


Figure 4

Figure 4 plots the temperature of the air as it evolved in the year 2015 at  500 hPa at 40-60° of latitude in the northern hemisphere at left and the southern at right. Plainly there is a north-west to south-east orientation in the movement of the air masses as  the atmosphere super-rotates about the Earth in the same direction that the Earth rotates, but faster. The speed of rotation increases in the southern hemisphere where the angle of attack is more aligned with the parallels of latitude. The air spirals from north to south at all latitudes.Warmer parcels will have an ascending  tendency while colder parcels will be descending.


New Concept: It is polar cyclones that are responsible for the intensity and evolution of the circumpolar trough.

A core theme of this work is that Polar Cyclones are energised by warm, low density cores in that space where the troposphere overlaps with the stratosphere. Differences in the ozone content of the air gives rise to differences in air density. A chain of cyclones on the margins of Antarctica   give rise to a rapidly circulating polar vortex in the stratosphere. There are no limits to convection in the stratosphere.

In summer the air rises to the limits of the atmosphere directly over the continent of Antarctica but in winter there is descent. A rising cone of air surrounds the zone of descent. This cone is sometimes described as a polar vortex. The cone begins at 300 hPa over the circumpolar trough and widens to take in the mid latitudes at the highest levels.

The upper troposphere/Lower stratosphere in the region of the circumpolar trough is characterised by intense mixing of air from diverse origins, the troposphere, the stratosphere and the mesosphere.

Between October and March the cone of ascending air below 50 hPa tightens like a hangman’s noose bringing air from the troposphere to the pole, creating an ozone hole, the falling away of surface pressure at this time of the year associated with generalised ascent over the Antarctic continent and so excluding the flow of air from the mesosphere that descends throughout winter.

That the circumpolar trough is due to differences in the ozone content of the upper air should be non-controversial.


The circumpolar trough is an unremarkable aspect of the atmosphere in the view of UNIPCC. The significance of its presence is  unappreciated. This is not an unusual state of affairs in the annals of humanity. In fact,  ‘Climate Science’ has not leaned a lot about atmospheric dynamics since the time of the pioneer Bjerknes who published a work on the near surface characteristics of polar cyclones in 1922.


It is realised, at least in meteorological circles, that a trigger is required for the formation of low pressure cells of rotating air  in the region of the circumpolar trough. That trigger  is an upper level trough, a mass of warmer, low density ozone rich air.

In  1922 it was not apparent that the most vigorous winds are located in the overlap between the stratosphere and the troposphere. Neither was it apparent that cold ozone deficient air  from both the mesosphere and the tropical troposphere are drawn towards the circumpolar front in the space shared by the upper troposphere and the lower stratosphere.

In fact the concept of a ‘stratosphere’ was pretty new in 1922. In many respects we have not moved on from that position despite the passage of 100 years. Indeed much that was known prior to the 1970’s has since been forgotten in parallel with the increasing concern that man and the environment in which he lives are  incompatible entities. Educators went off in socially responsible directions. A fabulous gravy train  was created for scientists and space agencies and all those who aspire to gain their daily bread by looking after the environment, painstakingly monitoring the activities of a an every increasing panoply  of despoilers, at one end mighty global corporations and at the other the humble cow that provides the milk for your morning cereal irresponsibly farting in  its field of green. Such is the work of the modern missionary.

The intensification of polar cyclones in winter, and the consequent lower surface pressure at that time of the year is due to the proliferation of ozone. Gordon Dobson observed in the 1920’s that, in high and mid latitudes low surface pressure identifies areas with high total column ozone. Dobson measured wind velocity and discovered that the strongest winds were not at the surface but in the region of the tropopause. The tropopause is kilometres lower when surface pressure is low than when surface pressure is high. This circumstance may be described as an upper level ‘trough’, a zone of  reduced air density that shows up in elevated geopotential height contours. Had Bjerknes apprehended the structure of the upper air we would not now be worrying about carbon dioxide in the atmosphere. We would be aware that the source of long term climate change, the source of decadal variations, the source of inter-annual variations and indeed our daily weather lies in variations in the ozone content of the stratosphere. We would  be at peace with the notion that our ‘rather too cool for comfort’ planet gains and loses energy according to change in the extent of its cloud cover.

There is so much to learn.




The strength of the meridional flow (north-south and south-north) in mid to high latitudes depends upon the distribution of atmospheric mass between the poles and the mid latitudes. That in turn rests on the strength of polar cyclone activity between 50 and 70 degrees of latitude in both hemispheres. Because these cyclones lift ozone rich air to the top of the atmosphere and will do so according to density differences wrought by ozone between 300 hPa and 50 hPa it follows that 10 hPa temperature over the pole is a proxy for the strength of polar cyclone activity. Another good proxy is surface atmospheric pressure.  A third would be geopotential height, a fourth would be the strength of the zonal wind. In this chapter, for simplicity, we look at 10 hPa temperature over the poles.

We are looking at temperature at the top of the stratosphere as one product of the change in atmospheric processes.When this indicator changes we a seeing a change in the parameters of the climate system. We have not one climate system but many across a continuum. If you can’t chart the continuum or predict the course of the climate system within the continuum you can’t mathematically model it.


We notice:

  • 10 hPa temperature varies more in winter and particularly so in the Arctic.
  • The Antarctic is slightly warmer in summer and about 20°C cooler in winter.
  • The discontinuity in Antarctic temperature in winter prior to and after 1976

This data suggests that the two poles are very different environments in terms of their atmospheric processes. If you live in the northern hemisphere welcome to the reality of what drives your weather in the very long term. Broadly speaking, the multi-decadal changes in the global atmosphere are driven from Antarctica while the inter-annual variations are a product of violent swings that occur in the Arctic winter. The long term evolution of northern hemisphere climate can not be understood without reference to Antarctic processes.  In polar regions, in winter, the air is highly mobile.Change in the temperature at 10 hPa indicates a change in the temperature profile due to change in atmospheric processes.


There is a lot of nonsense written about the polar vortex in standard issue climate science. What follows is a common sense interpretation. It describes the archetypal situation in the Antarctic, not the flim-flam phenomenon that manifests in the Arctic.

After 1948 the temperature of the stratosphere over both poles gradually increased in both summer and winter. The greatest increase incurred in winter indicating a change tied to atmospheric dynamics at the winter pole at a time when high surface pressure  results in the intake of cold, ozone deficient air from the mesosphere.

The inflow of mesospheric air is  associated with and strictly dependent on the seasonal advance in surface pressure. It is associated with the establishment of what is very confusingly called the ‘polar vortex’.

There is a cone or funnel shaped interface between two very different types of air in high latitudes in winter.  Think of a funnel with the tube like extension at its bottom removed. This funnel is wide at the top of the atmosphere (50 km in elevation) where it sits at about 40° of latitude and narrow at 200 hPa (10 km in elevation) where it lies at 60-70° of latitude. So, it has an annular or ring like shape about the pole but wider at the top than at the bottom. Ozone warmed low density air from the mid latitudes rises to the top of the atmosphere on the outside of this funnel and cold dense mesospheric air descends within ##the funnel. But there is no actual funnel. There is just an interface between two types of air. Mixing occurs at the bottom, up the sides and down through the top of the funnel. The depth of the funnel takes in a 40 kilometre  extent of the atmosphere and it involves the upper 20% of its mass including most of the part that contains ozone. The funnel tends to be discontinuous. Cold air escapes the interior on daily time scales. By means of the addition of mesospheric air we see change in the ozone content of the global ozonosphere that takes in the upper troposphere where marked differences in air density at 60-70° of latitude are responsible for the formation of polar cyclones. These cyclones move about the Earth in the same direction of rotation as the Earth itself but faster. Within the cyclone the air ascends. That ascent continues to the top of the atmosphere (outside of the funnel) and it sucks in air from the surface. In winter when this phenomenon is strongest, wind speed reaches 400 km per hour at the 200 hPa pressure level and accelerates further as it ascends to the top of the atmosphere. Below 200 hPa wind speed falls away towards the surface by about half. Wind speed is a good guide  to the location of extreme gradients in the density of the air.

The descent of mesospheric air within the funnel constitutes a sort of tongue. The extremely low temperature within the tongue is unrelated to surface conditions. It is due to the origin of the air in the mesosphere. An enhanced intake of mesospheric air  dilutes the ozone content of the stratosphere globally. However, to counteract this erosive force, ozone proliferates in the winter hemisphere due to reduced photolysis due to the absorption of UVB at low sun angles. Secondly, it may well be that ionisation due to cosmic ray activity can produce ozone over the poles. The balance of these competing activities determines whether the partial pressure of ozone increases or decreases. In springtime, as part of the final warming,  air from the troposphere is dragged across the polar cap destroying ozone (creating the ‘hole’) and enhancing the density gradient between ozone rich and ozone poor air driving enhanced polar cyclone activity and forcing surface pressure at 60-70° south to its annual minimum.

Ultraviolet radiation from the sun plays no part in this process because it happens during and following the polar night.

The most extreme temperature response to an increase in the ozone content of the atmosphere occurs over the polar cap at 10 hPa that is virtually the top of the atmosphere. This is due to the highly convective nature of the stratosphere in high latitudes, a concept that is unknown to ‘blinkered standard issue climate science’. At the top of the atmosphere ozone is perhaps being actively photolyised by short wave UVB. But it is also being dragged into the descending cone of mesospheric air that contains mesospheric species like N2O that destroy ozone.Temperature of the atmosphere in the Arctic

From the shape of the curves in the diagram above we can infer that mesospheric air descends to the 200 hPa pressure level. The curves represents the temperature of the air on a particular day. On a different set of days the level may be higher or lower. At the 200 hPa pressure level 80% of the mass of the atmosphere is below and 20% above.


Why did 10 hPa temperature increase after 1948 and particularly after 1976?  I suggest that extra-planetary influences slowed the east west super-rotation of the atmosphere about the pole reducing the intake of mesospheric air. Alternatively, an enhancement of cosmic ray activity resulted in ozone production that in itself, via polar cyclone enhancement is capable of lowering surface pressure in high altitudes. At any rate, surface pressure has fallen by about 10 hPa at the Antarctic pole over the last 70 years as the temperature of the stratosphere over the pole increased as shown in the graphs above.

Standard issue climate science conceives that warming in the stratosphere in high latitudes is generated by activity in the troposphere that propagates upwards as ‘planetary waves’. However, recent work by those who discuss the issue in terms of the ‘annular modes’ phenomenon identifies a top down mode of causation. It is irrational to conceive that shifts in atmospheric mass (decline in polar surface pressure and increase in mid latitude pressure) and upper air temperature that are other than simply oscillatory in nature can be a product of activity in the troposphere. There is nothing internal to the troposphere that could cause the temperature of the stratosphere to rise so precipitately between 1976 and 1980 and then to decline quite slowly as we see in the graphs above.

Neither is it plausible to suggest than an increase in ionising radiation from the sun could cause this phenomenon in the middle of winter. The only source of energy to warm the atmosphere in winter is infrared from the Earth via the activity of ozone.  This is another concept that is foreign to standard issue climate science that comprehensively fails to get to grips with the behaviour of the atmosphere in high latitudes where the global circulation of the air is determined. Climate science and its mathematical modellers are obsessed with the idea that it is the energy that is absorbed in the tropics that drives the system and that the system is self contained. However, it is plain that the atmosphere super rotates in the same direction as the Earth and the closer to the winter pole, and the higher the elevation, the faster it moves. As a rule of thumb in physical systems, the biggest impact is always seen closest to where the force is applied.

The concept of the Earth’s atmosphere as an electromagnetic medium super-rotating in winter in high latitudes and susceptible in its rate of rotation to the solar wind is anathema to climate science. The concept of cosmic rays ionising the air over the poles resulting in the production of ozone is not new to science in central and Soviet Europe. But it is very new to standard issue western climate science. That version of climate science is agenda driven and it does not see what it does not wish to see.

How did the build up of ozone in the stratosphere prior to an after 1976 affect surface temperature? We will now investigate that question systematically. We start in the Arctic, move to the mid latitudes of the northern hemisphere, the low latitudes of both hemispheres, the mid latitudes of the southern hemisphere and finally to the Antarctic continent.

We will see that the manner in which the climate has changed identifies the natural factors at work linking surface temperature change to the properties of the evolving nature of the atmosphere of the winter hemisphere. All data is  sourced here  (



First off we examine the Arctic. The graph above indicates the average temperature across the year. This is the sort of data that holiday destinations provide to people thinking of going on vacation. There is a very good reason why the Arctic is virtually uninhabited by man and nobody goes there on vacation. Even if  the Arctic were a little warmer there would be no rush to populate it.

The axes of the graphs below are standardised to facilitate comparison. They trace the evolution of temperature according to the month of the year between 1948 and 2015. Each month is presented successively in an anticlockwise rotation starting with January and February and ending with November and December. We are interested only in the big picture, the differences in the evolution of surface temperature in each month of the year. The differences are enormous. Whether there is an error in the data that of the order of a fraction of a degree is of no interest whatsoever.

SAT 60-90N

In winter, between November and April there is enormous variability in surface temperature from one year to the next. This is not the case in summer.

After 1976 winters were warmer. Yes, the Arctic warmed in the dead of winter at a time when the sun does not shine and outgoing radiation reaches its seasonal minimum. Plainly this sort of warming is not due to back radiation from carbon dioxide that should warm in both summer and winter, and given the extra radiation in summer more warming would be expected in summer than in winter.

All months exhibit cooling prior to 1976. After 1976 all months exhibit warming but to varying degrees and with different patterns and slopes.  Temperature changes differently according to the month of the year as does the ozone content of the air in high latitudes and the direction of the surface winds. The temperature of the near surface air is determined according to its origin. The atmosphere above the icy surface in winter is warmer than the surface. Generalised warmth in winter is associated with an intake of warm moist air from the mid latitudes. Whether the air is flowing in or out of the Arctic is a function of local surface pressure in relation to that in the mid and low latitudes. The latter vary very little but polar pressure varies a lot. An inflow of warm air from the mid latitudes is the essence of the warm phase of the ‘Arctic Oscillation’. Napoleon, impulsively chose to invade  Russia during a cold phase of the Arctic Oscillation in in 1812. Hitler ran into another cold phase in his invasion of Russia in 1941. The cold phase in the mid latitudes is associated with a deficiency of ozone over the polar cap, low temperatures in the stratosphere, weak polar cyclone activity at 50-70° north,  high surface pressure over the pole and the jet stream looping southwards to bring icy conditions to the mid latitudes.

In the very long term, over hundreds of years,  the ozone content of the global stratosphere is modulated by the relatively steady state the southern polar vortex with enhanced variability in winter and spring. Along with the final warming in Antarctica there is ‘the hole’ that is part and parcel of the warming and has always been so. The increase in the temperature of the Arctic stratosphere in summer after 1976 is due to to influence of the Antarctic. Notice the static surface temperature in November, December, January and February since the turn of the century. It seems we had a ‘change point’ about the end of the century where the warming ceased.

The month of greatest temperature variability in the Arctic is January and February when the stratospheric vortex is at its height of activity but establishing either weakly or strongly from year to year.  In fact, the ozone charged nature of the northern stratosphere forces the most extreme variability in surface temperature in the months of January and February  all the way between the northern pole and 30° south latitude.

In standard issue climate science there is no explanation for this marked variability in the surface temperature in the middle of winter. The ‘amplification’ of temperature swings in the middle of winter is not simply a function of latitude. As we will see it extends across latitude bands and is tied to January and February even in the tropics. The ‘polar amplification’ proposition that purports to explain the enhanced temperature variability in high latitudes is implausible, first because the warming is confined to just the winter months and secondly because it is not confined to polar latitudes. This AGW story does not add up.

The anthropogenic mode of surface temperature increase in standard issue climate science should have no seasonality. In the real world we observe a natural mode of climate change driven from the poles in winter. It emanates from the stratosphere as it responds to external stimuli. It’s mode of operation involves shifts in atmospheric mass wrought by change in the ozone content of the air. There is a waxing and a waning of the zonal and meridional components in the movement of the air affecting the equator to pole temperature gradient. That is the true nature of climate change. This mode of climate change has nothing to do with the activities of man.



The unfortunate thing about the mid latitudes in the northern hemisphere is the severe  winters. The nice thing about the change in the climate that has occurred since 1976 is that, following a period of cooling up to 1976, winter temperatures became less severe while summer temperatures remained virtually unchanged. But all good things come to an end and since the turn of the century winter temperatures are no longer increasing.

The scale on these graphs is the same as used for the Arctic with 8°C on the vertical axis. We needed that much to cater for change in the Arctic. Notice the much reduced variability at 30-60° north by comparison with the Arctic.

SAT 30-60N

Again, we see that winter is the season of change. Again we see cooling prior to 1976.

The silly thing about the calculation of the global temperature statistic is that it can never be an index of human welfare or the suitability of the planet for human habitation. The bulk of the Earths population lives in the northern hemisphere and the truth of the matter is that winter is inconveniently cold. The warming that occurred has been wholly beneficial. Why would the proponents of standard issue climate science complain about that? In truth, these people live in a world of their own where apples and oranges are aggregated as if they grew on the same tree and tasted exactly the same.


o-30° n

The northern tropics are a truly favourable zone for agriculture with temperature hovering about the 25°C optimum for photosynthesis across the entire year.

SAT 0-30N

Temperature variability is greatest in January and February. There has been little change in these months over the last seventy years except for an uptick of about half a degree from the mid 1990’s probably reflecting the process of warming in higher latitudes. The temperature of the tropics very much depends on the intake of cold waters on the eastern sides of the ocean basins. The ocean currents respond to wind and surface pressure. Surface pressure depends on the ozone content of the upper half of the atmospheric column. A step increase in the temperature of the tropics occurred after 1976 in January and February. That step change is reversible.



SAT 0-30S

Between the equator and 30° south air temperature from October to March moved to a plateau at a slightly elevated level in relation to the gradually warming regime that existed prior to 1976. Enhanced variability is driven primarily from the Arctic between November and April. This continues the theme that prevails across the northern hemisphere.



The temperature of the mid latitudes of the southern hemisphere reflects the the dominance of sea over land in terms of surface area. Winter temperatures are far less extreme than in the northern hemisphere but cool enough to strongly inhibit photosynthesis in winter. Summer temperatures are  about 10°C short of the optimum for photosynthesis. Plants are at the base of the food chain. Humanity depends upon plant growth for its sustenance.These latitudes are a tough gig for humanity especially on the west coasts and continental interiors that tend to be very dry.In inland areas winters are distinctly chilly. This latitude band is a bit cool for both  personal comfort and plant productivity.

SAT 30-60S

Surface temperature at 30-60° south is much less variable than in the mid altitudes of the northern hemisphere.  There is  a slight tendency for variability to be stronger in July and August. Some months show warming after 1976 and other months no warming.

The years prior to 1976 showed a relatively steep increase in surface temperature but in most months the rate of increase falls away after 1976.



The Antarctic is unremittingly cold all year round. No plants can grow. This is a place of scientific interest only. Hardy souls come here in search of adventure. Many pay with their lives. The interest in the climate of Antarctica resides in whether it will ever warm sufficiently to release the ice that depresses the continent into the Earths crust. The area of solid ice that forms about the margins of the continent in winter is as large as the continent itself. Antarctica has the same area as Australia. Ice mass has been increasing in spring and summer as Arctic ice has been retreating. While the temperature of the air remains below zero all year round this situation is unlikely to change very much.

Surface Air 60-90S

Temperature variability is extreme all year round but particularly so in winter from March through to November. Between November and February when the ice mass might be under threat if the temperature of the air were to rise above freezing point, the continent has cooled continuously over the period of record. In autumn, winter and spring the air warmed strongly after 1976. Strongest warming occurred at the coolest time of the year in July and August. A warming of the air by 2°C when that air is 30°C below zero in a location where nobody lives is not a threat to the existence of humanity. It is not the result of selfish consumption by the few scientists that keep their lonely vigil at the expense of succeeding generations. Why would we think it appropriate to include statistics for Antarctica in an index that  is supposed to relate the the welfare of succeeding generations unless the intent were to deceive?


Warming in high latitudes in winter is the product of a process set in train by an increase in the ozone content of the air. An increase in the ozone content of the air can result from a reduced intake of mesospheric air or an increase in cosmic ray ionisation. The former depends on the rate of super-rotation of the atmosphere that is dependent on the electromagnetic character of the near Earth environment as it reacts to the solar wind and the radiant output of the sun. Once set in train an increase in the ozone content of the air enhances polar cyclone activity that shifts atmospheric mass to the mid latitudes with knock on effects on the polar vortex via the loss of atmospheric pressure over the polar cap.

The impacts of the increase in the ozone content of the air are multiple. The westerlies blow harder in winter bringing warm air from tropical latitudes to high latitudes.This changes the equator to pole temperature gradient. It is one of two mechanisms involved in high latitude warming. The second involves a loss of cloud cover in the mid latitudes where the westerlies originate. As surface pressure increases in the mid latitudes the area occupied by  high pressure  cells increases. The increase in the ozone content of the air gives rise to warming of the atmospheric column, increased geopotential height and surface warming. The relationship between geopotential height and surface temperature is observed and acknowledged. The result of an increase in the ozone content of the air is an increase in geopotential height.


Warming in cold climates in the depth of winter should not be a matter for concern but congratulation. It beneficially extends the growing season on a planet that tends to be unfavourably cool in winter. This good news is turned into bad news when incorporated in an average  for the  temperature of the globe as a whole. That perceived increase then becomes as excuse for a social agenda involving widespread interference in markets to favour producers of particular forms of energy. These forms of energy are only available intermittently.   These intermittent systems must be backed up with plants that are capable of running continuously. All plants are most efficient when run at close to capacity. All plants are more expensive to run when ramped up and down or stopped altogether to cater for the input of energy from variable sources like wind and solar. This idiocy comes with a big price tag when we factor in the capital costs  to enhance energy efficiency in buildings. We pay for energy three or four times over when all the adaptations are factored in.

There is no virtue in a precautionary principle  unless we are sure that the works of man are changing the climate system in such a way as to promote warming  in summer. Plainly other forces are involved.

Here are some polite reminders:

  • The pattern of temperature change that is observed is very different to that expected from back radiation by uniformly distributed absorbers of long wave radiation.
  • For many people (activists) this notion of anthropogenic climate change is a matter not of knowledge and observation but of belief. Actions based on belief are non adaptive. These actions can be very costly.
  • The globe has not warmed for sixteen or more years while the carbon dioxide content of the atmosphere has continued to increase.
  • Carbon dioxide is plant food and has beneficial effects for plant life and photosynthesising organisms in the sea. These forms of life are at the base of the food chain.
  • The use of a global temperature as a metric of human welfare is insupportable.
  • Science that is funded out of the public purse always becomes a servant to those in control of the public purse.
  • The poor people of the world require the least expensive sources of energy and it is selfish and inhumane to deny them supply.

The green agenda on ‘climate change’ is not humane. It   is an agenda for social change involving impoverishment and deprivation. We need a new breed of politician who can take advantage of the support that is waiting in the wings for a rallying cry. The bulk of humanity is waiting in a state of increasing frustration and dismay. How many ratbags will we have to put up while waiting for a person with a modicum of common sense to turn up?










The map below has been edited by the author, adding red lines drawn freehand, to outline the darker areas over the oceans where cloud is, on average, less dense. The land tends to be relatively cloud free by comparison with the sea and shows up in tones of blue.In the mid latitudes there is a band of relatively cloud free air over the oceans, a ‘clear sky window’ if you will.

distribution of cloud global

I am indebted to NASA for the photo above and the description of global cloud cover below. The original can be located at

Over to NASA.

Decades of satellite observations and astronaut photographs show that clouds dominate space-based views of Earth. One study based on nearly a decade of satellite data estimated that about 67 percent of Earth’s surface is typically covered by clouds. This is especially the case over the oceans, where other research shows less than 10 percent of the sky is completely clear of clouds at any one time. Over land, 30 percent of skies are completely cloud free.
Earth’s cloudy nature is unmistakable in this global cloud fraction map, based on data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite. While MODIS collects enough data to make a new global map of cloudiness every day, this version of the map shows an average of all of the satellite’s cloud observations between July 2002 and April 2015. Colors range from dark blue (no clouds) to light blue (some clouds) to white (frequent clouds).
There are three broad bands where Earth’s skies are most likely to be cloudy: a narrow strip near the equator and two wider strips in the mid-latitudes. The band near the equator is a function of the large scale circulation patterns—or Hadley cells—present in the tropics. Hadley cells are defined by cool air sinking near the 30 degree latitude line north and south of the equator and warm air rising near the equator where winds from separate Hadley cells converge. As warm, moist air converges at lower altitudes near the equator, it rises and cools and therefore can hold less moisture. This causes water vapor to condense into cloud particles and produces a dependable band of thunderstorms in an area known as the Inter Tropical Convergence Zone (ITCZ).
Clouds also tend to form in abundance in the middle latitudes 60 degrees north and south of the equator. This is where the edges of polar and mid-latitude (or Ferrel) circulation cells collide and push air upward, fueling the formation of the large-scale frontal systems that dominate weather patterns in the mid-latitudes. While clouds tend to form where air rises as part of atmospheric circulation patterns, descending air inhibits cloud formation. Since air descends between about 15 and 30 degrees north and south of the equator, clouds are rare and deserts are common at this latitude.Cloud Africa

Ocean currents govern the second pattern visible in the cloudiness map: the tendency for clouds to form off the west coasts of continents. This pattern is particularly clear off of South America, Africa, and North America. It occurs because the surface water of oceans gets pushed west away from the western edge of continents because of the direction Earth spins on its axis.
In a process called upwelling, cooler water from deep in the ocean rises to replace the surface water. Upwelling creates a layer of cool water at the surface, which chills the air immediately above the water. As this moist, marine air cools, water vapor condenses into water droplets, and low clouds form. These lumpy, sheet-like clouds are called marine stratocumulus, the most common cloud type in the world by area. Stratocumulus clouds typically cover about one fifth of Earth’s surface.
In some of the less cloudy parts of the world, the influence of other physical processes are visible. For instance, the shape of the landscape can influence where clouds form. Mountain ranges force air currents upward, so rains tend to form on the windward (wind-facing) slopes of the mountain ranges. By the time the air has moved over the top of a range, there is little moisture left. This produces deserts on the lee side of mountains. Examples of deserts caused by rain shadows that are visible in the map above are the Tibetan Plateau (north of the Himalayan Mountains) and Death Valley (east of the Sierra Nevada Range in California). A rain shadow caused by the Andes Mountains contributes to the dryness of the coastal Atacama Desert in South America as well, but several other factors relating to ocean currents and circulation patterns are important.
Note because the map is simply an average of all of the available cloud observations from Aqua, it does not illustrate daily or seasonal variations in the distribution of clouds. Nor does the map offer insight into the altitude of clouds or the presence or absence of multiple layers of clouds (though such datasets are available from MODIS and other NASA sensors). Instead it simply offers a top-down view that shows where MODIS sees clouds versus clear sky.
Since the reflectivity of the underlying surface can affect how sensitive the MODIS is to clouds, slightly different techniques are used to detect clouds over the ocean, coasts, deserts, and vegetated land surfaces. This can affect cloud detection accuracy in different environments. For instance, the MODIS is better at detecting clouds over the dark surfaces of oceans and forests, than the bright surfaces of ice. Likewise thin cirrus clouds are more difficult for the sensor to detect than optically thick cumulus clouds.


Cloud levelsAbout half of the atmosphere is below 5 km in elevation and half above. Cloud is present in both the upper and the lower half of the atmospheric column.  In near equatorial latitudes very high cloud extends into the stratosphere. The jet streams at 8-15 km in elevation were first identified by tracking the movement of cirrus clouds.


Landscape from space

The photo above was taken from the International space station at an altitude of 431 kilometres above the surface of the Earth. A red circle is marked in the sea off Christchurch, New Zealand.

Gravity holds the Earth’s atmosphere in a close embrace.  Really close. As seen in the photo the atmosphere refracts blue light like a prism on the margins of the globe. The red line at the margin, in its thickness, represents a depth of about 27 km. Some 98% of the atmosphere lies within 27 km of the surface of the planet.

Project Loon, a venture by Google, employs balloons that travel at an elevation of 20 km finding sufficient variation in the winds to enable these balloons to circumnavigate the globe in 10 days and land at preordained locations.

In 1920 Gordon Dobson registered his interest in the winds of the stratosphere using theodolites to track sounding balloons. Strong winds in the stratosphere led Dobson to the measurement of ozone as the source of density variations that could explain these winds.

The stratosphere is a vigorous medium. The tongue of mesospheric air inside the polar vortex penetrates to the 250 hPa pressure level at 8 km of elevation and tracers of mesospheric air from both the mesosphere and the near surface atmosphere can be observed mixed with ozone throughout the stratosphere. NOx is a potent source of ozone depletion  changing surface climate because of its effect on ozone and surface pressure.

In 1956 when a Dobson spectrometer was utilized to measure total column ozone for the first time at the British Antarctic base at Halley Bay, the Antarctic  ‘ozone hole’ was discovered, amazing Dobson who was familiar with the pattern of ozone variation in the Arctic and therefore completely outside his field of experience. This ‘hole’ was later seized upon by environmentalists  as an instance of man’s capacity to abuse the planet.In truth, the 1956 observation indicates that the ozone hole existed prior to the widespread use of refrigerants and is a product of the atmospheric circulation in high latitudes. The ozone hole narrative, a pillar of today’s climate science’ stands in the way of a true appreciation of atmospheric processes.


The atmosphere is heated by contact with warm surfaces, secondly at cloud level by the release of the latent heat of condensation (notably tropical cyclones) and thirdly in the  as ozone absorbs radiation from the Earth itself. Low pressure systems at latitudes between 30° and 70° of latitude have their origin in ozone heating. These low pressure cells set up a rising circulation that engages the totality of the atmospheric column. In mid to high latitudes ozone is the primary driver of lapse rates. In high latitudes ozone is ubiquitous throughout the atmospheric column. Low pressure systems (cold core polar cyclones) form over the oceans. In the northern hemisphere winter the Pacific sector in overwhelmingly dominant. Once initiated in the stratosphere, a low pressure system lifts ozone into the ascending circulation accounting for the relatively static  location for elevated total column ozone and markedly lower surface pressure over the north Pacific in late autumn/ winter. In the southern hemisphere polar cyclones surround the Antarctic continent with a tendency to be most intense south of New Zealand.

A high pressure system in the mid latitudes can span 3,000 kilometres in its horizontal extent and manifestly involves the circulation of the air in both the troposphere and the stratosphere. As surface pressure increases so does geopotential height, indicating ozone heating. In chapter 3 we noted that the surface warms as geopotential height increases as a simple result of the expansion of the ‘clear sky window’.

At the equator convective clouds push wet air upwards to 15 km in elevation and moist air rich in tropospheric NOx invades the stratosphere, the prime reason for the relatively low levels of total column ozone in low latitudes.It is for this reason that high pressure cells are much denser aloft than low pressure cells, compensating for the warmth and lack of density near the surface to the point that surface atmospheric pressure is enhanced.

The novelty of this view of the atmosphere resides in the recognition of ozone as the source of surface pressure variation. It is in the mid to high latitudes of the winter hemisphere that surface pressure varies most aggressively. Secondly the novelty resides in the view of the stratosphere as a vigorous deterministic medium. Thirdly, it is novel in the notion that the entire atmospheric column moves ‘wholus bolus’ with scant regard to conceptual notions relating to a vigorous ‘troposphere’ and a static, quiescent stratosphere.

As Gordon Dobson observed back in the thirties , total column ozone maps surface pressure, the ozone content of the upper air determining the character of the winds at the surface. In fact, this view of the atmosphere is not so new. It was prevalent in the 1950’s when RM Goody, a colleague of Dobsons at Cambridge wrote:’The idea is gaining ground that, from the dynamical standpoint, the stratosphere and the troposphere should be treated as a single entity’. RM Goody, The Physics of the Stratosphere 1954. p. 125.

Our imaginations baulk at the idea that the atmosphere is thin and vertically interactive. The mental constructs that we have been taught, involving a supposedly quiescent stratosphere, lead us astray, especially when it comes to appreciating atmospheric dynamics in high latitudes.   High latitudes are so cold that few of us venture there. A very few hardy souls actually reside there. One thinks of the monkeys who take advantage of hydrothermal energy in northern Japan, the hardy Eskimos of North America and the wildlife that visits Antarctica for the ‘season’.

Palpably, change in what we refer to as ‘the stratosphere’ is the source of variations in surface pressure on daily, weekly, decadal and centennial  time scales. The stratosphere has a geography that is as fascinating as that at the surface of the planet, in fact, given its importance in determining daily weather it should be more so. The search for the origins of natural climate variation takes us inevitably to the stratosphere. In order to appreciate the power in the processes involved we need to maintain a sense of scale. This helps us to understand the coming and going of cloud, the most important determinant of surface temperature.


In the main cloud is made up of highly reflective crystals of ice because within a couple of kilometres of the surface, in temperature latitudes, temperature is at freezing point. Less cloud forms over land. The mid latitude high pressure cells are relatively cloud free. These clear sky windows expand and contract on a seasonal basis being more expansive in the winter hemisphere driven by heating in the summer hemisphere and a seasonal movement in atmospheric mass from the high latitudes of the winter hemisphere. It is the accumulation of ozone in the winter hemisphere that drives inter-annual climate variations. It is the ozone narrative of the environmental movement that stands in the way of an appreciation of the source of natural climate variation.


The phenomenon of mass transfer associated with ozone heating in high latitudes in winter has long been described as the Arctic or the Antarctic Oscillation, or on a regional scale as the North Atlantic Oscillation. Only recently has it come to be called the ‘Annular (ring like) Modes of inter-annual and inter-decadal climate variation’ that affects both hemispheres primarily in winter.

There is a very long period of variation in the Antarctic Oscillation that is undocumented. It is inter-centennial in its time scale and we don’t have the data to represent it. As of 2015 reliable data for the atmosphere goes back just 70 years. Of that period the first thirty one years has been documented by a process of interpolation based on sketchy data from the pre-satellite age and this especially applies to the southern hemisphere.

We have excellent well standardised data from 1979 from a few well maintained and closely scrutinised instruments that travel around the globe on a twice daily schedule, an immense improvement on the past where many instruments, poorly standardised, poorly located, subject to re-siting and the vagaries of interpretation by multitudes of observers, but during working hours only, who could nevertheless cover just a fraction of the whole with spot rather than continuous observations. Observations were recorded on fragile pieces of paper. Data from the pre satellite age is ……well, despite all the effort, very hard to locate, full of gaps, in the case of temperature much affected by the choice of housing for the instrument and change in the local built and natural environment, therefore of questionable utility and much subject to ‘reinterpretation’. But, there is one parameter in the climate record, atmospheric pressure, that is entirely unaffected by the choice of location for the instrument. The instrument we call a ‘barometer’ that works as well on a rolling ship as on land, in the sun or in the shade. There is therefore no reason for re-interpretation  of the surface pressure record.

Here is the kicker: The surface pressure record indicates that it is in high southern latitudes that surface pressure varies most widely. It also indicates that there has been a loss of atmospheric pressure over Antarctica of about 15 hPa over the last 70 years.

Those who are employed to predict the weather diligently map surface pressure variations and they see the origin of surface pressure variation here:

Their focus is on the stratosphere.


Observe the dense cloud cover over the Congo in the second photo above,and to a lesser extent over East Africa by contrast with cloud cover over the Sahara and the Kalahari Desert in Southern Africa and the very cold waters coursing northwards from Cape Town.

It takes particular circumstances to produce cloud over land in summer . What is required is a cover of actively transpiring vegetation that launches water vapour into the atmosphere. Nowhere is this more obvious than the zones that support tropical rain forest. As a general rule, if we desire cooler surface temperatures and more precipitation we should plant trees and avoid clearing high density vegetation unless it is to be replaced by a higher density of vegetation. It is commonly observed in the more arid portions of Australia that cloud forms over native vegetation rather than land cleared for pasture or grain growing.

From a plants point of view carbon dioxide is a scarce resource that is available at near starvation levels. When more carbon dioxide is available plants that are at the dry end of the spectrum in terms of available water respond magnificently. Australian CSIRO scientist Randall Donohue published the image below that documents the re-vegetation response to carbon dioxide . Apparently, the drier the environment the better the foliage gain from increases in CO2. This gain documented in the map has accrued between 1982 and 2010. Source:


Urbanization has contributed to the warming of the planet as societies have cleared natural vegetation, industrialized, laid down roads to facilitate the  movement of people and goods on a massive scale, provided lighting at night, expanded the suburbs on the margins of cities and built glass covered multi story buildings that trap heat and require air conditioning. Man has harnessed the power of fossil fuels, falling water, the sun and the wind to drive engines to perform work and to cool and warm the structures he creates. All this results in localized heating but the area involved is tiny. Look for the night lights as you travel by air and observe their sparsity. Trust to enhanced convection to deal with the temperature increase. Remember that much of the Earth is undesirably cool from the point of view of plant productivity.

All life depends upon the productivity of plants and much of the earth is arid. It is in these areas that enhanced availability of carbon dioxide gives the greatest response. Remember that there is nothing like native vegetation for producing clouds and cooling the surface. With the enhancement of carbon dioxide in the atmosphere the earth is entering a golden age of enhanced plant productivity.

Along with enhanced leaf area in dry areas we get greater evaporation, greater cloud cover and enhanced rainfall.Irrigation of dry areas enhances this process actively changing the climate for the better.


The two maps  below reflect the distribution of cloud and surface atmospheric pressure. Large areas over the oceans experience high surface pressure, sparse cloud cover, low precipitation and relatively high evaporation.  Except for a band of high precipitation extending south easterly from New Guinea almost the entire zone between the equator and 30° south is ‘clear sky window’. The sea traps energy by virtue of its transparency to as much as 300 metres in depth.  It yields that energy slowly, transferring it to colder regions. Operationally, if one were to increase the areas that are coloured brown you increase the energy cycling within the ocean and this raises the surface temperature of the globe. The flux in the cloud free areas involved is driven by the annular modes phenomenon, a response to ozone in the stratosphere.

Observe the symmetry in the two maps below. The distribution of evaporation less precipitation maps surface pressure and the distribution of cloud.

Evaporation minus precipitationSource:

distribution of cloud global


Consider the annual average of global air temperature as against top of atmosphere global outgoing radiation as documented on the left and right axis of the figure immediately below. The placement of the curves in the vertical dimension is arbitrary.I bring them into close association only to assess variation in their evolution according to the time of the year.

A system that is neither heating or cooling needs to be in balance across the year. From September through to January outgoing long wave radiation lags the temperature curve indicating energy entering the system in excess of that leaving. This seasonal increase in energy acquisition relates to the annular mode phenomenon. It is at this time of the year that the southern and the northern annular modes most drive change in the distribution of atmospheric mass opening up the ‘clear sky window’. In effect the ocean absorbs energy without immediately re-transmitting it.

OLR and Air T

In a system where surface temperature is static then outgoing long wave measured at the top of the atmosphere should also be static. Below is the data for both air temperature in the 0-30° latitude band (where the clear sky window is most extensive) and whole of Earth outgoing long wave radiation. Since 1998 both are essentially static despite the steep increase prior to that date. In the short term air temperature in the near tropical ocean is a function of the changing volumes of cold water introduced into the tropics due to flux in the planetary winds but in the long term these two series must vary together.

OLR and progress of T

The stabilization of  long wave radiation after 1998 at about 230 watts per square metre indicates a system that is no longer gaining energy. This, despite the vagaries of change in surface temperature, is the plain reality.

In the relatively cloud free zone between the equator and 30° of latitude  we would expect temperature to increase as surface pressure increases due to an expansion of the ‘clear sky window’. The diagram below indicates a relationship but it is plainly not direct, at least in the short term and we see that the increase in temperature frequently precedes the increase in surface pressure.Why is this so? There are several reasons:

  1. Ocean currents driven by the planetary winds  bring cold water from higher latitudes into the tropics displacing warmer water, the primary mode of short term variation in the temperature of the waters in the tropics.This acts to cool the tropics as surface pressure increases in mid latitudes opening the clear sky window that warms the extra tropical waters.
  2. A  strong warming dynamic in the South Eastern Pacific about the continent of South America precedes the temperature increase in the tropics by as much as a year. The flux in surface pressure across the Pacific is much stronger than across other oceans or indeed the global tropics taken as a whole.
  3. The Arctic Oscillation Index is currently in decline indicating an increase in surface pressure in the Arctic, a loss of surface pressure in the mid latitudes and a falling away of the strength of the winds that drive the circulation of the waters in the northern hemisphere. So, since 1998, El Nino bears the stamp of Arctic processes in the way that it manifests.

Temperature and pressure


  1. Earth is a very watery, very cloudy planet much subject to temperature swings according to the extent and density of cloud cover.
  2. Over land, 30 percent of skies are completely cloud free but the land is incapable of transferring energy to depth or retaining it and transfers that energy to the atmosphere, mostly within the 24 hour cycle, in the process reducing cloud cover in the middle of the day and allowing it to increase in the late afternoon. The annual cycle in global temperature involves a maximum  in northern summer as the enormous land masses of the northern hemisphere heat the atmosphere and cloud falls away. Solar radiation is 6% less intense in northern summer due to orbital considerations. However a falling away of cloud cover at this time of the year allows more energy to reach the surface producing a temperature maximum for the globe as a whole in mid year.
  3. The oceans are transparent to solar radiation and consequently store energy. Over the oceans, less than 10 percent of the sky is completely clear of clouds at any one time. This limits the uptake of energy by the oceans delaying and transferring the surface temperature response to a reduction in cloud cover. In clear waters light penetrates to a depth of 300 metres.
  4. Two thirds of the global oceans are in the southern hemisphere.
  5. Globally, cloud cover is greatest in southern summer when the Earth is closest to the sun and solar radiation is 6% stronger due to orbital considerations. This is when the globe as a whole is coolest and most susceptible to warming via loss of cloud cover. The evidence is that between September and January, the Earth emits less energy than it receives. At this time polar processes drive change in atmospheric ozone levels from year to year and across the decades.
  6. The expansion and contraction of the Hadley cell in the southern hemisphere affects the distribution and extent of cloud across the southern hemisphere. On an inter-decadal scale an expansion of the Hadley cell as surface pressure rises in the mid latitudes exposes more of the southern oceans to solar radiation. This is palpably the most important dynamic driving global surface temperature in the long term. Neither this nor the impact of ozone in driving  shifts in atmospheric mass that lies behind the expansion of the Hadley cell are recognized in the works of the UNIPCC.
  7. The Southern and the Northern Annular Modes govern the extent of the relatively cloud free high pressure cells that form over the ocean The NAM is influential in determining the swings in surface temperature between  30° south latitude and the northern pole with regular repeating variations that reach a maximum in January and February. The SAM cycles on an inter-centennial time scale providing the long swings upon which the NAM creates the surface chop.It produces the largest temperature swings that are seen in June and July south of 30° south. Although apparently lacking potency by comparison with the NAM on a centennial scale the SAM is much more variable than the NAM and drives the whole.
  8. The origin and cause of the NAM and the SAM is unknown to climate science because the role of ozone in giving rise to polar cyclones that determine the flux in surface pressure in high southern latitudes is as yet unrecognised. The most important source of convection, the jet streams and the flux in the weather on all time scales is still a mystery to climate science even though the importance of the stratosphere in determining the flux in surface pressure was realised a hundred years ago. The source of the natural variability that vacillates on centennial time scales is not a question that exercises the minds of climate scientists. Climate science of the IPCC variety appears to be blissfully unaware of the marked loss of mass in high southern latitudes over the period of record.
  9. In Southern summer the concentration of ozone in the global stratosphere is controlled by Arctic stratospheric processes. This is expressed as a dynamic fluctuation in surface temperature in the 0-30°south latitude band, and across the entire northern hemisphere, in the months of January and February. This is the signature written in the temperature record that identifies the source of surface temperature change.
  10. Surface temperature anomalies are associated with anomalous increases in geopotential height that manifest from the surface through to the stratosphere. This surface temperature increase is related to cloud cover variation due to ozone heating. We know this is the case because the temperature of the upper air varies more strongly than the air at the surface. It is not possible for change at the surface to produce an amplified change at elevation. Dissipation rather than gain is the rule.
  11. As a surface dweller humans are well aware that temperature varies according to the origin of the air that meets us when we step outdoors in the morning. Change in the planetary winds changes the origin of surface winds and is conjunction with change in surface pressure, geopotential height and upper atmosphere ozone. The chain of causation is top down. Climate science as presently  promulgated is unaware of this dynamic. It is in a sad state of constipation due to an ideological insistence that change must be bottom up in origin. Climate science is unaware of the basic dynamic governing the planetary winds and surface temperature.
  12. Recognition of ozone as the driver of the annular modes via the marked increase in ozone partial pressure outside the margins of the tongue of mesospheric air that descends from the stratosphere would interfere with the favoured ozone hole narrative of environmentalists. The Montreal Protocol for the phasing out of certain chemicals used as propellants and refrigerants,  a high water mark for the environmental movement  would then be seen as resulting from a mistake in the interpretation of atmospheric processes. There is too much at stake for the environmental movement to revise its opinion on this matter.
  13. Given the active circulation in the global oceans the temperature of tropical waters is probably a reasonable indicator of the amount of energy stored in the system, at least on decadal scales that average for the flux in the planetary winds and the resulting ENSO phenomenon. The rate of inflow of cold waters into the tropics via the currents that flow equator-wards along the western margins of the continents is highly variable. It is driven by the planetary winds that vary in velocity with changes in surface pressure. It is commonly observed that tropical waters cool as the trade winds strengthen. Increased velocity in the trade winds and the westerlies is due to the transfer or atmospheric mass from high to mid latitudes as ozone levels increase at the pole driving enhanced vorticity in cyclones of ascending air and the jet stream aloft. This is in turn associated with increased geopotential heights in the mid latitudes reduced cloud cover and surface warming. So, we have a conjunction of mid latitude warming due to reduced cloud cover and cooling in the tropics as increased wind velocity drives more cold water into the tropical circulation displacing warm waters into higher latitudes to raise surface temperature in those higher latitudes as it falls in equatorial latitudes. The action that really matters, in terms of energy acquisition, happens outside the narrow latitudes where ENSO is measured and in the southern hemisphere in particular.For most observers this is mind boggling.Those who look for the origin of the El Nino phenomenon are looking in the wrong place if they confine their attention to the narrow latitude bands where surface temperature varies most strongly.
  14. By virtue of the area involved, the tropics as a whole makes a large but somewhat misleading contribution to the global temperature statistic. The flux in temperature in the tropics is large in amplitude but it is driven according to a longer time schedule, years rather than months in accord with change in the planetary winds. The flux in temperature in the mid to high latitudes is vigorous, particularly so in the northern hemisphere and peaks with monotonous regularity in particular months of the year under the influence of polar atmospheric processes.
  15. Change in sea surface temperature on inter-decadal time scales is signalled in the months of January and February and July through to October under the influence of the Arctic and the Antarctic respectively. The change in surface temperature in other months is muted by comparison and in some instances opposite in sign to that in the months that show peak variation. There is no apparent groundswell of temperature increase across all months in accord with the increase in the atmospheres burden of well mixed long wave absorbers that would indicate a greenhouse effect at work.
  16. Taken together, these observations support the contention that cloud cover is the prime source of variation in the amount of solar energy stored in the earth system.
  17. The atmospheric column over Antarctica is the source of climate variation globally. Change in geopotential height over Antarctica precedes change elsewhere frequently imposing mirror image responses in the Arctic.
  18. Extremes in weather in the tropics, such as tropical cyclones and cyclones of polar origin are driven by entirely different modes of causation, the former by warm seas, moist air and precipitation the latter by change in the ozone content of the air aloft. We do not have to have recourse the grab bag called ‘climate change’ that implies anthropogenic modes of causation to explain extremes in climate and weather. We should be more discerning, more observational and more logical, in our thought processes. Currently those who pretend to have all the answers are behaving like primitives.



Ninety nine percent of the atmosphere lies within the ambit of a vigorous day’s walk, just 30 kilometres!

The atmosphere efficiently conveys heat to space via convection (transport) and radiation.  This is apparent in the 24 hour cycle of temperature as a point on the Earth’s surface alternately faces the sun and enters the night zone and the more so in inland locations where the daily range of temperature is accordingly much greater.We call this increase in the daily range of temperature the ‘continental’ effect.

In the northern hemisphere where there is a relative abundance of land the seasonal extremes are wider we have another example of the ‘continental effect’. The strong maximum in outgoing radiation in summer should promote summer warming if the atmosphere were subject to a ‘greenhouse effect’. But, consult the graph below and see that in the mid latitudes of the northern hemisphere we find that the temperature has increased mainly in spring and autumn. In high latitudes the increase in temperature has been in winter when outgoing radiation plunges to a  minimum.

Change in T in NH according to month of the year

Under an imaginary greenhouse regime the atmosphere becomes an impediment to heat transfer and we should see an increase in temperature in all seasons and in all locations just as the ocean limits the variation in temperature of proximate locations. But in fact we observe that the temperature increase that has occurred is variable according to the month of the year. This temperature increase does not tally with the mechanism that is proposed by the United Nations International Panel on Climate Change that was set up to examines man’s influence on the climate of the globe.

In cold conditions humans make sure that the air close to their skin is contained and unable to move. But, the Earth’s atmosphere is not confined in this way. Consequently it acts as a river for energy transfer from the surface to space. As a river it is perhaps the most vigorous on the planet. The ‘supposed greenhouse effect’ is no impediment to this process. Common sense dictates that a static atmosphere is required if the rate of loss of energy is to be curtailed and back radiation is to return energy to the surface via a so-called greenhouse effect. The atmosphere is anything but static. We insulate to stop the air moving. The atmosphere is air.

Plainly we must look to other modes of causation to explain the temperature increase that has been observed.


The following observations demonstrate the primacy of cloud that acts to reflect solar radiation, so determining surface temperature:

  1.   For the globe as a whole the sea is always warmer than the land and the global average for both the land and the sea is greatest in July.Global sea and air
  2.  A maximum in June/July is an anachronism. Earth is farthest from the Sun on July 4. The quotient of energy available from the sun (above cloud level) is 6% less in July than in January.

Why is the Earth warmest when it is most distant from the sun?

In northern summer the sun heats the abundant land masses and the land being opaque the surface quickly warms and with it the atmosphere.  The supply of water vapour to the atmosphere lags behind the increase in the water holding capacity of the air. There is less ocean in the northern hemisphere. In any case water is transparent and it stores energy to depth releasing it slowly. The upshot is that the heating of the atmosphere by the land rich northern hemisphere directly and dramatically reduces cloud cover.  The July maximum in global temperature is due to an increase in the diminished total of solar energy that is available in July. The amount made available at the surface is so much greater in mid year as to result in a temperature peak in mid year.

In northern autumn gathering cloud reflects more solar radiation and the globe therefore cools as its orbit takes it closer to the sun. That’s a pity because as I explained in the last post the globe as a whole is cooler than is desirable from a plant productivity point of view and all life ultimately depends on plants.


From: we have direct measurements for Izana observatory in the Canary Islands of  the number of days where cloudiness (red and yellow) is recorded and conversely the number of days where the sky is sufficiently devoid of clouds to achieve a clear sky rating (green).  The attenuation of cloud cover in northern summer is evident.
Cloud cover Teide Observatory, Spain


From we have direct measurements of solar radiation at the surface.

Radiation as a function of time of year and cloud cover in Bedordshire

At this site in the UK cloud is responsible for the attenuation of solar radiation by a minimum of 26%  and a maximum of 90%.


Surface temperature is directly modulated by cloud cover as demonstrated in the following satellite photograph.Temp varies with cloud cover



It should be abundantly clear that it is the mediation of energy input by clouds that is the most influential determinant of surface temperature. Zones that experience high surface pressure are relatively cloud free. The essence of change in the ‘annular modes’ lies in a shift of mass from high latitudes due to ozone heating that drives down surface pressure. High southern latitudes have lost atmospheric mass for seventy years on the run. Lost mass has been distributed across the globe adding to surface pressure in those parts of the globe where increased surface pressure  is allied with relatively cloud free skies. In chapter 3 we observed that the globe warms when geopotential height increases. Geopotential height increases when surface pressure increases as the core of a high pressure cells entrains ozone from the stratosphere.


Cloud comes in all shapes, types, sizes altitudes and density and is notoriously difficult to measure.

At  we have a paper documenting change in cloud cover and establishing correlations between cloud cover over Europe and the North Atlantic Oscillation, a local manifestation of the the northern annular mode.

Survey of cloud cover change


Note that in the mid latitudes in winter, cloudiness is associated with incursions of warm, moist air from the tropics promoting a positive correlation between the presence of clouds and surface temperature. The band of cloudiness formed by frontal activity occurs in the interaction zone between cold dry air of polar origin and warm air of tropical origin. People  might observe that ‘its too cold to rain’ when the air is coming from high latitudes. Alternatively they might say, they can ‘smell’ the rain coming when the air is humid and it comes from lower latitudes. Or they might say, ‘the temperature will increase when it starts to rain’.

To suggest that the positive correlation between cloud cover and temperature in winter is due to back radiation from clouds or that there is a positive causal relationship between the presence of cloud and surface temperature due to back radiation involves an error in logic. Its warmer in winter when there is cloud about  because the cloud arrives with a warmer, moister body of air that originates in tropical latitudes.  Cloud does not cause warming in winter and an opposite effect in summer. Cloud always involves an attenuation of solar radiation.


There should be no confusion as to the effect of cloud on surface temperature. To suggest that the climate is warming due to back radiation indicates a lack of appreciation of the reality of the way in which the atmosphere mediates the flow of solar energy to the surface of the planet and a lack of appreciation of the manner in which the atmosphere actively cools the surface.

To suggest that back radiation is causing warming without first ascertaining that cloud cover has not fallen away indicates an appalling lack of common sense and responsibility.  This brand of ‘science’ is unworthy of the name.

Many sceptics of the AGW argument wrestle with the notion that there is some sense in the idea of ‘back radiation’ from clouds and a CO2 rich atmosphere and try and assess whether the ‘feedbacks’ built into IPCC climate models are an exaggeration of reality. Most unfortunately this belief in cloud radiation feedback and the primacy of a ‘back radiation effect’ has given the ‘anthropogenic’ argument legitimacy.

Back radiation is no defence against a wind chill effect! You wear clothes to combat conduction and convection. To think otherwise is to be muddle headed.

The manner in which the Earth warms and cools indicates that there is another mechanism at work. This other mechanism has primacy and a study of the manner in which the globe has warmed and cooled suggests that it is also a sufficient explanation of the change that has occurred. It is a two way process, capable of warming and cooling as we observe on an inter-annual basis. The mechanism that is responsible for inter-annual variations is also responsible for the decadal and longer trends. When you understand the mechanism you will see that cooling has already begun and more cooling is the immediate prospect.

If you can not explain the inter-annual variations you fail climate 101. UNIPPC, you fail climate 101.



There is a notion that the climate of the Earth is deteriorating under the influence of generations of ‘developers’.  It is asserted that the burning of fossil fuels is increasing the proportion of carbon dioxide in the atmosphere causing the air at the surface of the planet to warm. The word sustainability is hip. The generation  taking up the reins of power, the best educated ever, seeks to act responsibly. In particular they see they want to curtail is the rape and pillage of scarce resources.

Concurrently with the issue of sustainability it is asserted that population growth must be contained and same sex marriage legitimized. The left has abandoned Marxism and taken on the environment. Coal is the new demon.  The exploitation of animals should cease whether on the land or in the sea. This bandwagon has been especially popular in places where living standards are already high and the social security net well established. The thought is that we should be satisfied with less because ‘more now’ will mean less for succeeding generations. The waggoner’s look around and they see is other snouts in the trough. That disturbs them mightily.I see this behaviour when I feed my animals. The dog gets very agitated when the cat is fed.

But hey, before we get too excited we should ask the question ‘what temperature regime is most desirable’.

A good place to begin is with an assessment of the range of climates that the Earth currently provides.

With the advent of satellite surveillance from the late  1970s we have comprehensive data for the atmosphere across the entire globe. Prior to that time, the climate record is deficient lacking data for much of the oceans and the great bulk of the southern hemisphere. With the knowledge of relationships between atmospheric variables that are a product of the satellite age, and taking advantage of computers, it has been possible to project backwards on the basis of rather sketchy data, but only with any confidence as far as 1948. The resulting climate record was made available in 1996 as ‘reanalysis data’ and is accessible at:  This data is good enough for a broad brush analysis.

Striking an average for the last 69 years  we can describe the situation with respect to surface temperature. In so doing we create a snapshot of the planet.

Broadly speaking temperature varies with latitude. But by virtue of the unequal distribution of land and sea between the hemispheres the thermal regime in the northern hemisphere is very different to that in the southern hemisphere. In the mid latitudes summers are warmer and winters colder in the northern than in the southern hemisphere. The Arctic has a summer of almost five months when temperature rises above the freezing point of water. The Antarctic is frozen on a year round basis, an impossible situation so far as human habitation is concerned.

What is most comfortable? When people retire from work and are able to relocate to the places they prefer, they go to the Mediterranean, to Florida, the Bahamas and to Queensland.  In the south west of Western Australia at 30° of latitude I observe that retired people hook up their caravans and migrate north in the winter. In general, people migrate to the tropics to avoid cold winters. On that basis, let’s face it quite squarely; much of the planet is on average too cold for personal comfort. People vote with their feet.

Imagine that you are a businessman, a farmer or a retired person from another planet visiting Earth to assess its suitability as a location to spend your leisure time,  invest your inherited wealth or hard won superannuation. You are a warm blooded creature. You like a free-wheeling life and can see no virtue in decorating your frame with multi-coloured clothing. If the mind boggles at this prospect perhaps imagine that you are the seed of a hermaphroditic plant travelling on the wind. Where would you like to land?

Here are the choices according to latitude. Average temperature by latitude

If you are a photosynthesising plant you will prefer the zone inside the red rectangle where photosynthesis at a sustaining rate is possible.If you are not wearing multi coloured clothing look for all round temperatures in excess of 25°C. If you are a cold adapted plant consider the data in the table below.

Optimum Temperature Cold limit for CO2 uptake
Agricultural C3 plants that have open stomata during the day 20-30°C 0 to -2°C
Deciduous trees in temperature zone 20-30°C -3 to -1°C
Coniferous trees 10 -25°C -5 to -3°C

How do you rate the real estate?

The life forms that inhabit Earth have evolved over time. We know that species can adapt to some extent when circumstances change. When conditions become too adverse organisms migrate to seek what they need elsewhere. The  Earth provides multifarious environments. However, looked at in the broad, and without the rose coloured glasses, cold weather is the Achilles heel of planet Earth, and in particular pole-wards of 30° of latitude. Cold is the circumstance that is most threatening when one is caught outdoors, even when one is endowed with the multi coloured clothing.

We are always curious as to how plants and animals can exist in the most adverse circumstances. This is because, outside the tropics, our planet is by and large, inhospitably cold in part of, or even the entire year.  We feel the pinch of it.

Why then do we assume that a warming planet is a bad thing?


If we look at the question simply in terms of the productivity of the Earth as dictated by surface temperature and precipitation a stark reality emerges. The map below shows net primary production (or carbon output from photosynthesis less that used in respiration). Mysteriously, many of the most productive parts are as yet sparsely populated.

Net pimary production


One is surprised at how little of the Earth performs well in terms of plant productivity.  All life forms depend upon the productivity of plants. Carbon output (as carbohydrate and cellulose) depends upon photosynthesis and is limited by temperature and precipitation. The most productive areas lie between the tropics of Capricorn and Cancer, the warmest and wettest areas on the surface of the Earth. The bulk of the rest of the Earth is by comparison a relative wasteland of, at best ‘seasonal’ productivity. Here food must be preserved, stored or transported from more productive locations to sustain a population over the period when nothing much grows. The alternative is to grow plants in a heated chamber supplemented with light and fed with compressed carbon dioxide out of thick steel walled steel cylinders at considerable expense.

In the tropics temperature ranges between 20 and 30°C across the year.  Three crops are possible within the space of a year. Latitudes south of 60°south, in every month, and north of 60° north, between October and March, are uniformly inhospitable to plant life. No plant survives permanent burial in ice and snow. Between these extremes, at 30-60° of latitude the northern hemisphere winter months can be excruciatingly cold and although cold adapted plants can assimilate carbon at quite low temperatures the rate  is excruciatingly slow. Snow adapted species have needle shaped leaves that hang down to inhibit the accumulation of snow so that they can remain free of that burden and access light. Trees with broad leaves drop them prior to winter choosing to hibernate rather than lose branches as they accumulate snow. In the subtropics of the southern hemisphere, although winter temperature is less limiting and there is little chance of a damaging burden of snow  the area of suitable land is relatively small and much of  it inhospitably dry. This is the domain of the hardy, drought tolerant, evergreen eucalypt that, when introduced to Africa and the Mediterranean, greens the dry country and displaces the local vegetation much to the chagrin of the local inhabitants who see this interloper as a weed.

A dispassionate view of the Earth, considering its ability to promote plant life, sees the planet as distinctly cooler than is desirable.  Earth could support more life if it were warmer, especially in winter. Accordingly we find that the most populated parts of the globe lie in the well watered tropical and subtropical  climates, mostly on the eastern side of the major continents where precipitation falls in the warmer summer months. These climates favour photosynthesis at rates that are respectable.

The basic premise that a warming planet is bad for mankind is just plain silly. The reverse is in fact the case. Modern civilization enables humans to live in relatively cool circumstances only when provided with food, elaborate and expensive shelter and energy for heating the interiors of structures. Its called ‘central heating’.Venturing outside one must don many layers of clothing, making work tedious. But it’s less tedious and precarious than working in space or on the moon. Humans do adapt very well, but there is always inconvenience and cost involved.

In locations where winters are cold animals are provided with warm shelters. They no longer forage because there is nothing to forage on. Food grown in summer is stored for the winter.

The pattern of consumption of carbohydrate  by human species appears below:


It is plain that there is a mismatch between production and consumption. This reflects:

1. The ability to move commodities. In short, transportation involving machines and energy.

2. Diversity in living standards. Machines and energy are not universally available.

3. A great deal of spare capacity for further growth of population based on exploitation of potentially productive areas currently sparsely populated. Much greater numbers could be catered for if water can be made available in warm but dry locations where population density is currently very low. With machines and energy this is possible.

Given that the temperature of so much of the globe is limiting because its too cool, a little extra warmth is highly desirable. The increase in the length of the growing season associated with extra warmth, a characteristic of climate change in the northern hemisphere, has been beneficial.It should be welcomed. It should not be the cause for concern.

Given that plants use less water as the carbon dioxide content of the air increases that circumstance should be welcomed.

Relax, its all good on the climate front.

The real problem is that our societies are so poorly organized that, although energy is cheap and the capacity to produce machines has never been greater than it is at the present time there is currently a deficit in demand for machines. In many parts of the globe, including the heartlands of western civilization youth can not find useful employment. Banks are awash with funds and interest rates are at historic lows. Governments are spending a lot more than they earn without taking up the economic slack. Commodity prices are falling. No-one wants to buy.

This will end badly. Flights of fancy are counter-indicated. We must look to create the greatest good for the greatest number.



The Arctic stratosphere, so cold today

Reference frame

The diagram above serves as a reference frame. The middle stratosphere at 30 hPa has been off the scale cold since the end of November as the Arctic began to experience Polar night.




The great bulk of the northern landmasses are experiencing sub zero temperatures. The winds streaming out of the Arctic are warm by comparison with the air near Lake Baikal and the interior of Iceland. Reputedly China is experiencing its coldest winter for thirty years. The diagram below shows the circulation of the air and its temperature at 10hPa or 30 km in elevation.


The cold is due to the descent of mesospheric air in the circulation at left centred over Russia and spiralling in to the surface in the proximity of Lake Baikal. The warm ascending circulation on the right that is centred on the north Pacific is due to the persistent presence of high concentrations of ozone that gives rise to low surface pressure. By contrast, the Siberian high pressure zone centred on lake Baikal has an elevated surface pressure as seen below.


The diagrams below show the evolution of temperature at elevations between 10hPa (30 km) and 70 hPa (17 km) in the area of the polar cap that takes in only that part north of 65° north, where the polar night prevails. It is important to realize that Lake Baikal, where the descent of very cold air is centred is at latitude 53° north. We are in fact sampling the temperature of the air outside the zone where the cold air originates.

10 T

A sudden stratospheric warming affecting the lower stratosphere has materialized in the last few days.


The warming is more apparent at 30 hPa than at 70 hPa.


Just a few days ago on the 24 th January we had this distribution of ozone at 10 hPa. Notice that there is an increasing deficit in ozone from the equator towards the pole at this elevation with up to 20 ppm on the perimeter and down to 6 ppm in the core. This reflects the fact that the air that is descending is low in its ozone content and high in NOx, compounds based on nitrogen that destroy ozone. There is an ascending circulation located over the ozone rich north Pacific that  was apparent above. That ascending circulation drags in air from the core and the entire ozone rich mass of air rotates about the core in a clockwise ascending spiral.

10 ozone

Observe the bulking up of the ozone driven circulation over the last three days. By the 28th there is an increase in the volume of ozone deficient air from the core inside the dashed oval that serves as a marking of the zone of ascent.

10hPa ozone 27

Latest available data is for the 28th January.

10 ozone 28

It is of the greatest importance that you understand that the inflow of NOX modulates the ozone content of the wider stratosphere. Just because climate science as embodied in the works of the IPCC is ignorant in this respect (wilfully so, I imagine, because they can’t be that unobservant). So, I will run down through the atmosphere to show you the process in detail.

At 20hPa background levels of ozone in low latitudes are distinctly lower than at 10hPa so there is less contrast between the ozone rich ascending circulation over the north Pacific and the background. We observe an extensive lateral mixing process in action. We have no means of judging the extent of vertical mixing in a diagram of this sort. There is a secondary exchange region, much smaller in scope at about 2 o’clock over the Middle East. The ozone deficient core is centred on Siberia and elongated towards Greenland. The ozone deficient core is weaker and less extensive than it is at 10hPa.

20 ozone

Below, the zone where ozone accumulation drives the ascending circulation is evident at 30hPa, an elevation of 23 kilometres.

30 ozone

At 30hPa ozone peaks over the North Pacific at 10ppm. On the periphery we have as low as 5ppm and in the core as low as 3ppm.

40 Oz

At 40 hPa the contrast between the ozone rich north Pacific at 9 ppm and the background at 3 ppm is still marked but the core is much reduced in area. There is less lateral mixing implying a steeper rate of vertical ascent in the ozone enhanced zone.

50hPa ozo

At 50hpa core ozone values in the north Pacific zone are in the region of 9ppm but ozone values fall away strongly towards lower latitudes implying fast ascent over the north Pacific. Notice the extent of the penetration of the Arctic circle by ozone rich air. The temperature of the air at 60-90° north reflects the varying penetration of the night zone by ozone rich air that circulates on its periphery. ‘Planetary waves’ reflect the pattern of ozone variability in the atmosphere that drives surface pressure. Cold core polar cyclones are warm core aloft. Without a warm core there can be no ascent.

70 oz

At 70 hPa the descent of cold vortex air is the dominant feature of the atmospheric circulation. This air has changed very little in its temperature in its descent from 10 hPa at 30 km to the 70 hPa level at 17 km and nor would we expect it to. Although it may have run a perimeter course and suffered some admixture of ozone rich air in the process it has moved only 13 km in the vertical and it has essentially retained the character that it did at source.  We don’t have any indication of the vertical vector in this plot but common sense dictates that the air can not pass through an ozone rich zone without having its temperature altered considerably. The implication is that the vertical vector at 9 0’clock is probably more important than the horizontal vector.  The question is, How far does this mesospheric air descend and what is its effect on the circulation of the lower atmosphere.

70 T Circ

The last observation of the temperature of the stratosphere that is available is at 100hPa.

100 oz

In low latitudes through to about 30hPa there is no ozone. The uplift of tropospheric air containing NOx destroys ozone at the 100hPa level. The north Pacific still rejoices in up to 4ppm ozone while vortex air at 1.5 to 2.ppm ozone occupies an extensive zone from 30° of latitude northwards.


At 250hPa (9km) very cold mesospheric air is being mixed with warmer stratospheric air. Areas of low surface pressure on the periphery give rise to cyclones( cold below, warm at 250hPa). The Jet stream manifests at the edge of the circulation as a wave like formation.

250hPa T Global

Globally, we see that polar cyclones are warm core circulations aloft, especially evident in the southern hemisphere at this time of the year.

Some take home messages:

  • Surface temperature in the winter is driven by a dramatic change in the source of the air, being driven from aloft. Notice the very cold air at 250 hPa over Lake Baikal.
  • According to the rate of delivery of mesospheric air into the polar atmosphere the ozone content of the air will change and with it surface pressure polewards of about 50° of latitude. This pattern of surface pressure change shifts atmospheric mass between high and low latitudes as the ozone content of the air increases driving surface pressure ever lower. This (unknown t the IPCC) is the origin of the annular mode phenomenon.
  • The winter polar circulation is highly energetic and is subject to ascent and descent. It is not stratified.
  • According to the ozone content of the air and the contrast in density that arises polar cyclones are generated on the margins of descending mesospheric air.
  • Planetary waves reflect the ozone content of the air.
  • Polar temperatures aloft reflect the pattern of distribution of warm and cold air. There is nothing mysterious about sudden stratospheric warmings.

Last but not least lets see this:

1 hPa Jan 8

1hPa 29th

Between the 8th and the 28th of January the ratios have changed implying that ozone has built up in the Pacific sector and is there is more ozone in the core than there was, perhaps via an exchange between the two. Or perhaps it represents a reduction of the inflow of mesospheric air heralding a major warming of which the one that we are seeing today is just a precursor?







Surface atmospheric temperature varies strongly month to month and year to year. The broad brush view is obtained by looking at variations across the decades. SAT by decade

In the broad we can say that in terms of the decadal variations:

  • Temperature in high latitudes is much more variable than in low latitudes.
  • Temperature is much more variable between 30°north latitude and the Arctic than elsewhere.
  • Cooling manifested in the early decades other than in near equatorial latitudes where the extent of temperature change is least.
  • It is clear that temperature change is a two way process.
  • Cooling occurred in the decade after 1986 in the tropics as greenhouse gases accumulated. We have no explanation for this cooling, and that which affected the highest latitudes and the latitude band 30-60° north from 1956 through to 1976 and are unable therefore to be certain that it will not recur.
  • Both the Arctic and the Antarctic began a warming phase starting with the decade 1977-86. The warming in the Antarctic is faster in the early phase but slower in the latter. The Arctic warmed particularly strongly after the turn of the century as the rate of warming in the Antarctic fell away. Greenhouse gases other than ozone are well mixed and vary very little according to latitude. Something other than greenhouse gases must be responsible for the variation in the rate of temperature change according to latitude.
  • In general the temperature of the mid latitudes of the northern hemisphere cooled and warmed with the Arctic but to a lesser extent.
  • The evolution of temperature in the tropics and the mid latitudes of the southern hemisphere is similar. These latitudes cooled slightly as the warming in high latitudes accelerated after 1977-86.


Here we look simply at the difference between the first and the last decade in each month of the year.

change in t by lat

  • The Antarctic warmed in winter and cooled in summer showing more change than the Arctic.
  • The Arctic warmed slightly in summer but a great deal in winter.
  • The mid latitudes of the northern hemisphere at 30-60° north warmed in autumn and spring. This lengthened the growing season in a part of the globe that includes the heartlands of Western Civilization, Western Europe and North America where winters are cold but can sometimes be severely cold. Industrialization and the ready availability of cheap energy have made it possible for these parts of the planet that experience very cold winters and a short growing season to support a greater population. Warming in autumn and spring has assisted this process.
  • We see that warming is in no sense ‘global’. Neither is it consistent  between one month and another.
  • In those places that suffer from cold, warming is temporarily constrained to the cooler winter months. Where winters are unfavourably cold, in fact most of the planet, this is beneficial.
  • Plainly the major dynamic here has nothing at all to do with the concentration of a greenhouse gas that is well mixed. If it were, the warming would vary little between the seasons and there is no reason to expect that it should vary with latitude.
  • If there is a background level of warming due to increasing greenhouse gases that provides a plateau upon which ‘other forces’ superimpose change then we would see that background warming manifest at that time and in that place where the ‘other forces’ are least active. Unless we can decide what those other forces are and be truly cognizant of the mechanism that is behind them we are unable to estimate the change that they are responsible for and can have no idea whether man is having an influence on he climate or not. If we go ahead and suggest/maintain that man is responsible for the warming of the globe as a whole we make an error in logic. We can not be sure of anything. To suggest that man is likely to be responsible and to assert that we can do this with a high level of confidence  is clearly overstepping the mark.

In this circumstance how are we to proceed? Plainly the bulk of the warming that has a seasonal component is not connected with greenhouse gases. We must ask what causes this warming. In particular what is it that causes warming in winter in high latitudes?

In the next chapter we look at the extent of variability in temperature according to the month of the year. We find that there is a consistent pulse attached to warming that indicates its source. At first glance the process of change is apparently  hemispheric in its incidence. However, when we look closer we see a unifying signal emanating from the Antarctic stratosphere that governs all. The degree of warming is very different according to latitude even though it bears a consistent time signature. There is a pacemaker that orders its heartbeat. The closer one approaches the poles the more impressive is the beat of that pulse. That pulse is strictly seasonal. The mechanism is fascinating. It represents a new frontier for climate science. Get out your stethoscope, gather round, here is a curiosity, here is a case that is entirely unfamiliar.





Meteorologists are well aware that surface temperature varies with geopotential height at 500 hPa. The United States National Oceanic and Atmospheric Administration says as  much below.  The full text can be accessed at: here:

GPH and ST anomalies

But hey, there is a problem here: The  text above the map states  that there is a relationship between geopotential height at 500 hPa and surface temperature. But thereafter, the commentary is  driven by an overarching belief that carbon dioxide drives surface temperature and it is therefore constantly escalating.

But carbon dioxide is well mixed in the atmosphere and cannot account for regional warming on a month by month basis.  The observed warming is  regional in scope and it conforms to the pattern of the distribution of surface pressure and geopotential height, not the distribution of carbon dioxide that is in fact well mixed and very close to uniform in its distribution throughout the atmosphere.

And surface temperature is not constantly escalating as we will see below.

Gordon Dobson started measuring total column ozone in 1924 and soon noticed that total column ozone mapped surface pressure. An increase in surface pressure that is related to the distribution of ozone can originate in two ways namely:

  1. A reduction in the ozone content of the column above 500 hPa allowing the upper half of the column to become more dense, contract and thereby allow more molecules to  populate that column. But, this is not possible in a column of descending air that has its upper extremity in the stratosphere.
  2. A piling up of atmospheric mass against the force of gravity in the mid latitudes due to a shift in mass from high latitudes. The density of the column in the mid latitudes is increased as atmospheric mass accumulates.This should reduce geopotential height at 500 hPa.  For geopotential height to increase at 500 hPa the increase in atmospheric mass must be accompanied by warming below the 500 hPa pressure level . The lower half of the column becomes less dense as the column weight increases.

So, the question arises, is the increase in geopotential height at 500 hPa due to the descent of ozone within the atmospheric column of descending air as the weight of the column increases?


When satellites were equipped to study the atmosphere in 1969 ozone could be mapped more effectively than via surface measurement. The following report of 1973 links the distribution of ozone to geopotential height at 200 hPa :

Sensing ozone


Plainly total ozone varies with the upper troposphere (200 hPa) geopotential height,  and ozone distribution at that level defines the circulation of the air and the jet streams.

If you have read chapter four you will be alert to the fact that south of about 20° of latitude ozone begins to affect the lapse rate at the 300 hPa level  and that the notion of a demarcation between  troposphere and stratosphere via a hypothetical ‘tropopause’ is no longer sustainable. Perhaps it is the fuzzy boundary phenomenon that leads to the ambiguity of lumping together the ‘systematic variation in ozone distribution in lower stratospheric circulation‘ and the ‘correlation between ozone and upper troposphere geopotential height’ in the abstract above.

The variation in ozone partial pressure drives geopotential height at 200 hPa. Of this there is no doubt. But, does it drive  height at 500 hPa? The study reported below bears on this matter.

Baroclynic development

Found at:

The authors of this study set out to examine the distribution of winter geopotential height minima over the period 1958–2006 at the 200, 500, and 850 hPa pressure levels. In effect they engaged in a very extensive mapping exercise to locate cyclones of ascending air that are associated with low surface pressure at three pressure levels, 850 hPa close to the surface, 500 hPa at the mid point and 200 hPa that is plainly within the fuzzy boundary between the troposphere and the stratosphere. When the geopotential height at a central point was lower than six or more of the surrounding eight points on a 2.5° latitude and longitude grid  the authors nominated that point as a minimum of geopotential height and mapped it as seen above.

The map reveals that height minima at 500 hPa and 200 hPa have a common geographical distribution. Furthermore, in the lowest map we see an extension of the relationship into subtropical latitudes that sees variations of geopotential height at 850 hPa to some extent aligning  with those at higher elevations.

In the light of this knowledge we might say that the temperature of the surface of the Earth is as much tied to variations in geopotential height at 200 hPa as it is to variations in geopotential height at 500 hPa and the implications would be very much clearer.

Lets pause at this point to remind ourselves of the very simple relationship between the capacity of the air to hold water vapour and its temperature. If the temperature increases more water can be held in the invisible gaseous phase. If temperature increases the droplets of moisture and highly reflective multi branching crystals of ice that constitute clouds will simply disappear. When this occurs the surface of the planet receives more solar radiation and it warms accordingly.

Lets pause a moment longer to observe that this very different chain of thought  is the narrative that should follow the observation that surface temperature is related to geopotential height…… and I hope that the United States National Oceanic and Atmospheric Administration takes note and changes their narrative accordingly.

The critical observation is that geopotential height minima have a common distribution throughout what we refer to as ‘the troposphere’ and are forced by one means or another by differences in the ozone content of the air  at the 200 hPa level and above. Many meteorologists being the practical, results oriented fellows that they are, have long noted that cyclogenisis  at elevation seems to be a requisite for the development of cyclogenesis below.

Meteorologists examine the circulation of the air at 500 hPa to be relatively free of the influences of topography, vegetation, land and sea, in order to predict the course of weather in the days ahead.  We see that the action at 500 hPa  is plainly dictated at 200 hPa and above (the lower stratosphere) where the largest variations in geopotential height, ozone partial pressure, atmospheric density and air temperature are observed. But, is that the end of it?


Chapter 5 identified the origin of so called ‘cold core’ Polar Cyclones in the heating of the air above 500 hPa by ozone. A shift in atmospheric mass from high to mid latitudes is forced by enhanced cold core Polar Cyclone activity that drives surface pressure lower in high latitudes. The result is enhancement of surface pressure in the mid and low latitudes.

This chapter establishes that geopotential height at 200 and 500 hPa vary together in the extra-tropical latitudes. Furthermore, the increase in geopotential height that accompanies the surface pressure change is accompanied by a loss of cloud cover. All ultimately relate to the changing flux of ozone in the upper half of the atmospheric column in high latitudes that occurs in winter that drives both the exchange of atmospheric mass and the observed change in the distribution of ozone that drives the circulation of the atmosphere at 200 hPa   in the extra-tropical latitudes.

We are aware that high pressure cells bring air from aloft towards the surface. We are also aware after chapter 5 that the stratospheric circulation involves descent in the mid latitudes. That brings air with an elevated ozone concentration into the troposphere.

Soooooooo, in the absence of an ability to touch, feel, smell or see what is actually happening in the atmosphere and with a sense of caution related to the fact that our hand waving and speculation is not always related to reality, and that we don’t always get things right we should inspect the surface temperature record for date stamping that is related to ozone flux at one pole or the other during the winter season. That should go a long way towards settling the matter, at least until a better explanation comes along……you know, I don’t think the science is ever completely settled.


The tropics constitute a large surface area and make a huge contribution to the global temperature average especially on multi-year ENSO time scales. But surface temperature is actually most volatile on a monthly basis in the mid and high latitudes where ozone directly regulates cloud cover.

It is in the tropics that the waters of both hemispheres are brought together and homogenized. We can eliminate short term variability due to wind by looking at decades rather than years.

In the diagram below we have sea surface temperature at decadal intervals. Tropical sea surface air temperatures in April, May, June and July behave as if they were a bundled package with little variation between  months.  Departures seem to occur only when there is a marked change in trend. The month of April shows more variability and July the least.

SST Tropics Ap,M,J,J

By contrast, we see in the graph below, drawn to the same scale, that there is a big variation in air temperature between August and March.  It is between August and March that polar processes engineer large changes in surface temperature according to the flux in ozone from month to month, year to year, decade to decade and across the centuries. Pre-eminent in terms of volatility are the months January February and March and to a smaller extent December, under the sway of Arctic polar processes. The Arctic, precisely because of the limited descent of mesospheric air is supercharged with ozone. When change occurs it’s dynamic. Its like coming into a perfectly dark room and switching on the light.

SST tropics other months

Source of data:

Antarctic atmospheric  processes that involve the same interaction with mesospheric air as in the Arctic, but on a much more continuous and interactive basis, are most volatile between August and November. The movement in tropical sea surface temperature in these months is in the same direction at the same time but has less vigour in line with the reduced partial pressure of ozone in the entire southern hemisphere. The fluctuations in cloud cover and surface temperature engineered by the Antarctic are consequently muted and can be compared with the act of switching on a light fitted with one of these newfangled environmentally conscious, energy saving  halogen globes that emit much less light.

Observe that in the last decade surface temperature in the tropics between August and November has fallen away, a departure from the long term trend but not unprecedented.

In the key months where the Arctic has a strong influence on cloud cover and surface temperature (January through to March) a departure from trend manifested a decade earlier in  1997-2006. A cooling trajectory was established in the last decade in all months that are strongly affected by polar atmospheric processes. This is due to a continuing reduction in ozone partial pressure in high latitudes in both hemispheres that goes along with a cooling of the high latitude stratosphere.

We will see that January and February are months of most extreme temperature variability in all latitudes between 30° south and 90° north while June and July are the months when the Antarctic most heavily stamps its authority on temperature between 30°south and 90° south.

We will see that the change in surface pressure due to the flux in ozone in high southern latitudes happens on very long time  scales with a swing so wide as to govern the ozone content of the entire stratosphere. The Antarctic makes the centennial swells upon which the Arctic generates the energetic surface chop.

Why did tropical sea surface temperature decline in the decade 1967-76? Why the spectacular increase of 0.5°C over the following two decades? Why the departure from trend between January and March in the last two decades. Obviously, there are more complex factors at work than a the remorseless increase in the very tiny proportion of the well mixed greenhouse gases in the atmosphere.

But let me hasten to add that there is one, naturally occurring greenhouse gas that is quite unequally distributed, that varies in its concentration across the year and over time. It varies under the influence of polar atmospheric processes that dictate the rate of entry of mesospheric air that contains the chief agent of erosion  of ozone in the stratosphere described as NOx.

Follow the data, that is what science should be about. If  the narrative doesn’t follow the data, its propaganda.

Lets face it, people tell fibs to suit their own purposes.

5 The enigma of the ‘cold core’polar cyclone


Source of data above:

When I started looking into atmospheric matters back in 2008 and I discovered that the temperature of the Antarctic in mid winter at 10 hPa had jumped in the 1970’s as the atmospheric pressure at the surface took a plunge it started me on a search for answers. This post tells you what I have discovered as a private self funded researcher seven years on.

The cold core polar cyclone

The ascent of the air at the core of a polar cyclone is a mystery because the near surface air in a polar cyclone is cold and dense. Polar cyclones form in high latitudes where the surface and the air in contact with it is very cold. Air that is cold and dense should not ascend. The  unsatisfying explanation that is offered in the meteorological literature has to do with fronts between cold and warm air and the Coriolis ‘force’. But the Coriolis ‘force’ is not a force at all. It explains the direction of rotation and has nothing to do with the force responsible for uplift or down-draft.

Anticyclones form in the mid latitudes where the surface is warmer than in high latitudes. This is the case despite the fact that anticyclones form over water that is relatively cold for the latitude, located on the eastern margins of the oceans. Anticyclones also form over cold land masses in winter. To take the land based anticyclone out of the equation we can examine the summer hemisphere.

It is now possible to examine the atmosphere in real time and toggle back and forward to look at it as on some day in the past. It’s animated too which is a real help. You get spot values at the click of your mouse. This is a fantastic resource for a student of the atmosphere. Find it at:

First, sea surface temperature. Observe that the eastern margin of the Pacific is cooler. The ocean moves clockwise, driven by the winds.


The day I have chosen is the first day of September 2015. We will stick to this single day throughout.

Below we have atmospheric pressure with an overlay of wind at 1000 hPa.

The lines indicate the circulation of the winds. Three tropical cyclones manifest south of a large high pressure cell. The high has a central pressure of 1030 hPa.  Cold core Polar cyclones are also in evidence associated with zones of low surface pressure in high latitudes. The air circulates in an anticlockwise direction around cyclones and a clockwise direction around anticyclones.

1000hPa SLP

The map below shows Wind Pressure Density at 1000 hPa (close to the surface) in terms of kilowatts of wind energy per square metre. Tropical cyclones are powerful systems but the energy is generated very close to the core and has little lateral spread . By contrast the cold core polar cyclone shows a fraction of the energy that is generated in a tropical cyclone and the energy manifests remotely, and in particular over the oceans rather than the land.


At 850 hPa (1000 metres) the energy attached to a cold core polar cyclone manifests over both the land and the sea.


The map below shows air temperature at 850 hPa (1000 metres). Shades of green represent temperatures above 0°C . Shades of blue indicate temperatures below 0°C. It is apparent that the air in cold core cyclones at 850 hPa is close to 0°C, while the air in the major anticyclone rejoices in a temperature of 12°C, well below the 24°C that is the temperature of the sea surface only 1000 metres below.

850 Temp

Below we have the temperature of the air at 500 hPa, roughly 5.5 kilometres in elevation with half the atmospheric column below and half above. All temperatures are sub zero.  At its heart the anticyclone has a temperature of -5°C  while the cold core cyclones have central temperature between -24 and -35°C.

500 temp

Below again: There is a marked increase in wind pressure density on the outer margins of cold core cyclones at 500 hPa. But each polar cyclone conserves a relatively extensive core where the horizontal vector in the movement of the air is slight and we can infer that the vertical vector is pronounced. These cold core cyclones are now immensely more powerful and extensive systems than tropical cyclones.

500 WPD

At the 250 hPa pressure level, about 9 kilometres in elevation, extreme wind speeds manifest on the outer margins of cold core polar cyclones while the cores of vertically ascending air are extensive.

250 wind

Below, we see that at 250 hPa the ascending air in the core of a polar cyclone is warmer than the the rapidly rotating air that surrounds it.

250hPa temperature

So, we see that at 9 km in elevation a polar cyclone has a warm core. The laws of physics are not flouted by the ascent of relatively dense air that is somehow magically displaced upwards by air of lower density. It is the power generated aloft that pulls denser air into the system from below. In effect we have the engine attached to an extraction fan above, a pipe extending towards the surface, narrowing as it does so, sucking dense air into the upper atmosphere. This is like a vacuum cleaner that sucks in cold air and pushes out hot air. At 250 hPa just 25% of the atmosphere is above and 75% below. Somewhere between the 500 hPa and the 250 hPa pressure level (5.5 km to 9 km) sufficient energy is imparted to the atmospheric column within these polar lows to reduce the lapse rate of the air with increasing altitude to the point that the air within these polar cyclones becomes relatively warmer and less dense than the air that surrounds the core.

Gordon Dobson who invented the spectrophotometer to measure total column ozone in 1924 very quickly discovered that ozone mapped surface pressure with more ozone in the atmospheric column of low pressure systems than in high pressure systems. De Bort, the Frenchman who put more than 500 balloons into the atmosphere around 1900 discovered that the air became warmer in cells of low surface pressure at a lower elevation than in high pressure cells. Both gentlemen were independently wealthy private researchers who considered that the science of their day was not settled.

There should be no mystery as to the cause of this phenomenon. Once initiated, the system gains momentum by virtue of the fact that the air that is being elevated is warmer that the air through which it ascends. This is so because the surface air is warmer than the air aloft. This gives rise to very extensive areas of extremely low surface pressure in high latitudes.

As the ozone content of the air increases in winter, the jet streams so formed become more intense.

As the ozone content of the air varies from year to year, so too does surface pressure in high latitudes.

As surface pressure falls away in high latitudes it rises in the mid latitudes where anticyclones form.

How far does the air ascend in polar lows?

70 wind

The pattern of ascent is still present, albeit more gently so, at 70 hPa (above) with 93% of the weight of the atmosphere below, an elevation of just 17 kilometres. A balancing descent occurs in the mid latitudes associated with anticyclones.

10hPa wind

The air is still mobile at 10 hPa (30km) with 99% of the atmosphere below. Importantly, there is both ascent and descent.

10 pacific descent

See above. At 10 hPa in early spring in the southern hemisphere the air is very mobile in high latitudes. Gentle descent is apparent over the cold waters south of the equator in the eastern Pacific. This feeds ozone into anticyclones.

70 pacific desc

Above, at 70 hPa we have very strong ascent in the high latitudes and broad areas of gentle descent in the mid latitudes. The southern hemisphere is approaching its seasonal peak in ozone  partial pressure that occurs in October. The winds at 70 hPa reflect where that peak occurs. We are looking at a donut shape sitting atop the Antarctic continent.

250 sth pacific

At 250 hPa the southern hemisphere is in a frenzy driven by differences in ozone partial pressure between air masses of different origin. Patterns of descent will drive the evolution of geopotential height, cloud cover and surface temperature in the manner described in chapter 3.

500 globe pacific

At 500 hPa there is a relaxation in the circulation.

700 desc Pacific

At 700 hPa the winds are more benign. The pattern of descent over the south Eastern Pacific is typical.

700 pacific

The pattern of surface pressure is closely aligned with surface winds. Very high pressure in the south eastern Pacific is associated with very cold waters in this region promoting settlement. This area gains atmospheric mass very strongly when it is lost at 60-70° south very much influencing the strength of the trades and the westerlies across the Pacific and thereby the ocean currents that determine the relative extension of the ‘cold tongue’ across the equatorial Pacific that is the essence of the ENSO phenomenon.

70 Antarctic SLP wind

The flow of the air over Antarctica at 70 hPa is very much related to the pattern of surface pressure forced by the ozone content of the air at lower altitudes. It is the ozone content of the air between 500 hPa and  the 250 hPa that is deterministic so far as the circulation of the winds is concerned.

Notice the zone of high surface pressure over the Antarctic content that sets up a pattern of descent near the surface.

Mesospheric air descends in the core of this circulation. It is relatively deficient in ozone and has damaging levels of the ozone destroyer NOx . The British Antarctic base at Halley Bay lies to the East of the Antarctic Peninsula. When  total column ozone was first measured there using Dobson’s spectrophotometer in 1956 Dobson was amazed at the relative deficit in ozone by comparison with the northern hemisphere. But the deficit disappeared in November, as it does today. As surface pressure has fallen in high southern latitudes due to the increase in the partial pressure of ozone in the donut shaped pattern of polar cyclone activity that surrounds Antarctica, as atmospheric pressure has increased in the mid latitudes of the southern hemisphere expanding the Hadley cell in response to falling pressure in high latitudes, the donut of low pressure has been forced south, the tongue of mesospheric air is narrowed but it penetrates more deeply. This is the chief, albeit unrealized, one hundred percent home grown, all natural, ozone hole dynamic.


So called ‘cold core’ polar cyclones are warm core aloft and they do not contradict the laws of physics. By virtue of the fact that they depend for their activity on the partial pressure of ozone in the air that fluctuates on all time scales we must look to the cause of these fluctuations if we wish to understand the climate at the surface of the globe. It is the exchange of atmospheric mass between high and other latitudes that determines surface wind, cloud cover , the energy flux into the oceans and surface temperature. This is at the root of weather and climate change. I will demonstrate in later chapters that what happens in Antarctica rules all.

The flux in surface pressure that is wrought by ozone is greatest in winter and this puts a date stamp on the  surface temperature record. That identity will be revealed in due course.