4 The geography of the stratosphere mk2

My previous effort in relation to this chapter attracted very few readers. So, here I re-state the argument, hopefully in a more accessible form. I do so because the subject matter is critical. A great deal depends upon an appreciation  of the matters described below. If there are queries and disagreements lets have them up front in the comments:

The description of the nature of the stratosphere given below differs from accounts that you will see in the literature in important respects, and for good reason. The stratosphere is a complex entity, much more complex and interesting than the troposphere. By virtue of its effect on atmospheric pressure in high latitudes (directly responsible for Polar Cyclones and the Jet Streams) the stratosphere drives weather and climate, the planetary winds and surface temperature on all time scales. This realization is new, a product of investigation into what is known as the Annular Modes (ring like modes) of variation in surface pressure over just the last couple of decades and insights into the origin of polar cyclones together with the observations of the early French balloonist De Bort, Gordon Dobson and others that ozone maps surface pressure.  It has long been known that there is enhanced total ozone in cyclones of ascending air (called cold core cyclones) but the significance of this observation has been unrealized.  Ozone heating of the upper part of the atmospheric column is responsible for these cyclones.They are so pervasive in high latitudes that the formation of more cyclones and the intensification of existing cyclones changes surface pressure in high latitudes shifting atmospheric to or from high latitudes in the process.

It is the difference in atmospheric pressure at the surface of the planet that determines the planetary winds, patterns of precipitation and surface temperature so we must get a grip on the nature of Polar Cyclones if we are to understand surface climate.

There are three modes of heating of the air, heating by a warm surface, heating within the atmosphere due to the release of latent heat and heating within the atmosphere by absorption of long wave radiation from the surface of the Earth. Notably, it is the heating of the air due to the presence of the greenhouse gas ozone that accounts for the warmth of the stratosphere and the generation of polar cyclones that are the manifestation of the strongest modes of atmospheric heating on the planet, albeit hitherto overlooked.

In this account I focus exclusively on the southern stratosphere because it is simpler, being relatively unaffected by north south intrusions by land masses, except in the notable instance of South America. In the southern hemisphere a strong accent is given to polar processes due to the  presence of the Antarctic continent almost symmetrically distributed about the pole.  In southern winter the massive and relatively invariable heating of the entire northern hemisphere adds to surface pressure in high southern latitudes. In fact this seasonal shift of atmospheric mass to the southern hemisphere creates a planetary high in surface pressure over Antarctica. The atmospheric dynamics resulting from the donut shaped peak in ozone partial pressure at 60°-70° south latitude result in an ‘ozone hole’ over the polar cap. The chemical composition of the space inside the donut of ozone rich air, and the manner of its escape into the wider atmosphere has profound implications for the evolution of the ozonosphere and the extent of cloud cover globally.

FACTORS AFFECTING THE TEMPERATURE PROFILE OF THE SOUTHERN STRATOSPHERE LATERALLY AT 10hPa.

All the remarks under this head address what can be observed in the diagram immediately below. Please give it your closest inspection.

Temp at 10hPa over Antarctica

Source: http://www.cpc.ncep.noaa.gov/products/stratosphere/polar/polar.shtml

The temperature profile at 10 hPa that is mapped above exhibits differences in the evolution of temperature between the hemispheres. This has nothing to do with the sun or short wave solar radiation. Air temperature varies with the place that the air comes from and the upper atmosphere is an active rather than a passive medium. Cooling in high latitudes in winter represents a regime of supercooling that is completely unrelated to the progress of the temperature at the surface. This supercooling is the thermal consequence of the penetration of the  polar stratosphere by very cold, ozone deficient air that originates in the mesosphere. When mesospheric air is present, temperature plummets and when it is not present the space hitherto temporarily occupied is taken by warmer, ozone rich air that is immediately adjacent. That pattern of arrival and departure is mapped in shades of blue and green above. By virtue of the erosive effect of NOx compounds present in mesospheric air the ozone content of the wider atmosphere is much affected as mesospheric air is inevitably mixed into the wider atmosphere. It is obvious from the diagram above that this has knock on consequences over a very wide latitude band. Mixing processes speedily  impact the evolution of ozone partial pressure and temperature at lower latitudes and especially so in the northern hemisphere where a prevailingly slight presence of mesospheric air enables a regime of high ozone partial pressure and elevated temperature to prevail. In this regime, small additions of mesospheric air to the melting pot result in widespread change.

The temperature of the stratosphere is a function of the extent of the heating by short wave radiation from above, long wave infra-red from the Earth itself and the dynamics of the movement of the atmosphere affecting the extent of the presence of mesospheric air. Atmospheric dynamics vary strongly with latitude.

The chief absorbers of outgoing infra-red radiation from the Earth are water vapour, of which there is little in the stratosphere, carbon dioxide, that is uniformly distributed and therefore of little account as far as surface pressure is concerned and ozone that is much affected in its concentration by the impact of photolysis. In addition the presence of NOx that catalyses the destruction of ozone affects ozone partial pressure as NOx is rapidly spread across the stratosphere.

Heating by short wave incoming radiation is the dominant influence on the temperature of the stratosphere above 10 hPa affecting the most elevated 1% of the atmospheric column by weight. Long wave infra-red radiation from the Earth drives the warming of the stratosphere very broadly between about 300 hPa and 10 hPa, although the lower fuzzy margin is higher at the equator and lower in high latitudes. The lower fuzzy margin corresponds with the tropopause near the equator but nowhere else. Outside near equatorial latitudes, as the air increasingly dries, the forces responsible for the cold point at the tropical tropopause wither away and the descent of cold mesospheric air at the pole in winter moves the cold point upwards towards 10 hPa. This divorces the cold point from any association with ozone distribution or the distribution of water vapour and the notion of a ‘tropopause’ that happens to be conjunction-al with the cold point and the presence of very dry air in low latitudes. It is only conjunction-al in low latitudes because massive continuing uplift keeps ozone aloft. The notion of a tropopause has no meaning, and is therefore un-locatable in mid or high latitudes.

Marked differences in ozone partial pressure give rise to a very different stratosphere between winter and summer. This reflects the presence of mesospheric air and enhanced O3 in high latitudes in winter.

The pressure of photolysis on ozone diminishes as the path through the atmosphere lengthens accounting for a natural increase in ozone partial pressure with latitude and more so in winter. This sets the background level of ozone according to latitude, less at the equator and more ozone closer to the poles. But it is over the polar caps that mesospheric air establishes its presence interfering with the aforesaid pattern and via its interaction eroding ozone partial pressure throughout the stratosphere.

To reiterate and expand: The impact of NOx from the mesosphere occurs via a tongue of mesospheric air that enters the stratosphere in winter. Entry is facilitated via an increase in the velocity and mass involved in the overturning circulation driven by ozone in high latitudes (forming Polar Cyclones). Descent that represents the return arm of this circulation occurs at the pole and in the mid latitudes. Ascent involving that part of the column containing ozone occurs in an ‘annular ring’ that is most intense at 60-70° of latitude and descent is apparent at 20-40° of latitude especially over cold waters on the Eastern side of the major oceans. The latter constitutes the corresponding ring like mode of descent in the mid latitudes. Because the circumference of the Earth is so much greater in the mid latitudes than it is over the polar cap the overturning circulation heads in this direction, the line of least resistance, rather than towards the polar cap. Descent over the polar cap is by comparison almost a stalled circulation in the sense that the rate of descent is very slow. If it were fast and continuous we would have much less ozone in the southern hemisphere than we do currently. The southern hemisphere would become almost uninhabitable. Fortunately for the inhabitants of the Southern Hemisphere NOx rich air from the mesosphere enters the wider stratosphere at a much slower and intermittent rate across the leaky polar vortex and is replaced from above. However there is one part of the southern hemisphere where the mesospheric air tends to lean northwards and that is towards the continent of south America. In the high Andes where elevation enhances exposure to UV light, the suicide rate peaks in spring.

The rate of descent of mesospheric air, the surface area of the interaction zone, its depth of penetration and impact on the wider stratosphere across the entire globe is surface pressure dependent. The landmass of south America interrupts the formation of polar cyclones. Zones of very high surface pressure form to the East and west of the continent in the mid and high latitudes associated with the presence of very cold oceans. The tongue of mesospheric air expands in its volume as surface pressure increases over the polar cap. Surface atmospheric pressure at the pole is to some extent just a proxy for the rate of overturning of the ozone driven circulation in high latitudes and to the remaining extent a proxy for the tendency of the atmosphere to be shifted equator-wards under the impact of geomagnetic pressure wrought by the solar wind. In the long term the latter determines the issue driving ozone partial pressure one way or the other and with it surface pressure over the polar cap and in the mid altitudes. Hence the relentless loss of mass since 1948.

It is important to realize that infrared emission from the Earth is never limiting, even at the highest latitudes. That stream of energy that is available both day and night and at all levels of the atmosphere. Ozone absorbs at 9-10 µm in the peak of the energy spectrum emitted by the Earth. Ozone is most enhanced between 30 hPa and 10 hPa shading away in concentration to the limits of the mesosphere on the one hand and downwards into the lower atmosphere to an altitude that varies with latitude on the other. Because the energy flow from the Earth is inexhaustible in terms of the amount intercepted by ozone there is little difference in the temperature of the stratosphere between day and night. This is a very different situation to that at the surface where short wave energy from the sun heats only during the daylight hours and wide diurnal fluctuations in temperature are the rule. If you read that the temperature of the stratosphere is the result of the interception of of short wave radiation by the atmosphere check the credentials of the author of that statement, even though he is a co-author or even a chairman of the committees responsible for UNIPCC reports. That author is not getting to grips with the nature of the ozonosphere.

As already mentioned geography ensures that the cooling in the stratosphere over the Antarctic during the polar night is much enhanced by comparison with the Arctic. The Antarctic at 1 hPa is slightly warmer in summer due to orbital influences. The massive annual range of temperature over Antarctica due to the depression of the winter minimum is anomalous because, at the surface, it is the northern hemisphere that exhibits the greatest swing between summer and winter.   This enhanced range is mainly the result of the presence of very cold mesospheric air over the Antarctic pole in winter and its relative exclusion between December and March.

The relative absence of cold mesospheric air in southern spring of recent times has resulted in a marked increase in the temperature of the polar cap and the intensification of the southern circulation. This trend is related to the 15 hPa fall in surface pressure over Antarctica since 1948.  The decline very likely began at the turn of the nineteenth century. The process of withdrawal of mesospheric air was already well under-way in the 1940’s.  To some extent the warming of the polar cap between 65-90° of latitude is due to a narrowing of the tongue of mesospheric air due in turn to enhanced uplift closer to the margins of Antarctica as the air that is external to the vortex becomes warmer in late winter and spring, reflecting its increased ozone content. In this way atmospheric dynamics drive ozone content and the extent of the ‘ozone hole’ over Antarctica. That hole was present at the time of the earliest measurements of total column ozone by Dobson’s colleagues at the British Antarctic base situated in Halley Bay in 1956, astounding Dobson and leading him to question the validity of the measurement. It was not what was expected given the pattern that he had observed in the Northern Hemisphere. The Antarctic ‘hole’ disappeared in November at that time as it does today. Measurements of total column ozone in the following year confirmed that it was the stratosphere and not the instrument that was responsible for the difference. Students of history will remember that the use of Freon in air conditioning and domestic refrigeration only really got going in the post WW2 era.

The anomalous warming of the Antarctic stratosphere that shows up between October and December in the data for 2014 in the diagram above is a function of the sustained ozone content of the air after the period of the polar night and despite the growing impact of photolyzing solar radiation as the sun rises higher into the sky and the atmospheric path shortens. Plainly it is the rate and the extent of the descent of mesospheric air that rules the temperature regime over the Antarctic polar cap rather than the angle of the sun.

By comparison the descent of mesospheric air in the Arctic comes in fits and starts allowing the northern hemisphere to maintain a much enhanced level of ozone in the stratosphere.

Again, looking at the diagram above, the temperature of the entire stratosphere is much affected by short term dynamical processes that manifest in the Arctic in winter. The descent of mesospheric air over the Arctic polar cap has knock on effects across a very wide band of latitudes. In terms of timing, the plethora of warming events in the Arctic has a life that is independent of the march of the sun. Again, it is the dynamics within the atmosphere that determine the pattern of evolution of temperature in the Arctic.

THE VERTICAL PROFILE IN THE  TEMPERATURE OF THE ATMOSPHERE

Gordon Dobson who invented and built a spectrophotometer to measure the quantity of ozone in the atmospheric column according to the attenuation in the energy at the wave length that destroys it (and is partially used up in the process) observed that ozone affects the upper troposphere:

The chief result of these measurements at Arosa  (1932 Swizerland 46.78° N) was to show with certainty that the average height of the ozone in the atmosphere was about 22 km and not about 40-50 km as had been thought before. They also gave a fair idea of the vertical distribution, showing that the main changes took place at heights between 10 km and 25 km. This made it much easier to understand why changes in the total amount of ozone should be so closely correlated with conditions in the upper troposphere and lower stratosphere.

hPa Km
850 1
700 2.5
600 3.5
500 5.0
400 6.5
300 8
200 11.0
150 12.5
100 15
30 23
10 30
1 45

We may think it strange that Dobson writes about the presence of ozone affecting the upper troposphere because it is often (always) assumed that the quantity involved is immaterial. But, in fact the issue as to whether ozone is present at 10 km in the mid latitudes or not, and of significance to weather and climate, is worthy of close examination. Is the boundary between the ozonosphere and the lower atmosphere actually fuzzy?

The French balloonist deBort  had actually settled the issue at the turn of the 19th century when he observed that the ‘isothermal layer’ as he called it was encountered at  9-10km when surface pressure was low and at 12.5 km when it was high but let us not take too much account of that. He is French and we are British….and the message got awfully rusty in the effluxion of time…or did we simply regard him as a crank.

A simple method of ascertaining where ozone begins to affect the temperature of the atmosphere is to inspect the rate at which temperature falls with elevation. The rate of change of temperature with elevation is affected by the release of latent heat (predominantly a near surface phenomenon) and the presence of ozone (an upper air phenomenon), both reducing the lapse rate. In parts unaffected by precipitation or ozone heating the decline of temperature with elevation should be the dry adiabatic lapse rate of about 10°C per 1000 metres. As ozone begins to affect the temperature of the air the lapse rate should immediately fall below the dry adiabatic lapse rate…..or whatever the rate has been to that point of elevation.

At any concentration above zero ozone has the ability to raise the temperature of the air via absorption of long wave energy from the Earth and the instantaneous transfer of this energy to surrounding molecules.  At 30 hPa where the ratio between ozone and other atmospheric constituents is greatest the actual ozone content is only about 30 parts per million, well below the concentration of CO2 at 400 parts per million. But, by virtue of its uneven distribution it is responsible for the stratosphere. Strangely, when we inspect the curves there is no evidence that down radiation from an ozone rich layer causes an increase in the temperature of the air below…..but that is an entirely different type of investigation that should not distract you or me at the moment.

In an effort to locate the effective starting elevation of the stratosphere the thermal profile of the atmosphere will be mapped in 10° latitude bands between the inter-tropical convergence zone just north of the equator and the southern pole. The data is for the year 2014 available in the database that can be accessed at: http://www.esrl.noaa.gov/psd/cgi-bin/data/timeseries/timeseries1.pl  We can delve into the distant past later on.

The inter-tropical convergence
10N-0

Here the South East Trades meet the North East Trades and a line of tropical thunderstorms rings the globe, especially in the afternoon.

Because the horizontal scale is in pressure levels rather than metres the intervals on the horizontal axis are not constant. However the blue line indicates a lapse rate of 6.44°C per 1000 metres that is a true reflection of  the lapse rate between the surface and 600 hPa a distance of 3500 metres with the temperature falling 22.54°C over that interval. The red line represents a lapse rate of 6.86°C per 1000 metres that is  a true reflection of  that particular lapse rate between 300 hPa and 100 hPa where the temperature falls 48°C over 7000 metres. The dry rate of 10°C per 1000 metres can only be attained if there is a lack of warming from any source. The degree of uplift at the ITC and the presence of appreciable moisture can be assumed to reduce ozone to near zero levels below 100 hPa. Away from the ITC both uplift and moisture levels do fall away allowing ozone to penetrate below the 100 hPa pressure level and down to less than 10,000 metres in low pressure cells. Let us assume however that  ozone is not present unless the lapse rate falls below 6.86°c per 1000 metres, the slope of the red line. That is the conservative approach.

Both the blue and the red lines have the same slope in all diagrams that follow. All the diagrams have a common vertical and horizontal scale so that the slope of the blue and red lines is invariable.

There is a cold trap (about -80°C) at 100 hPa that is said to promote a dry atmosphere above this pressure level. In practice clouds do manifest in the lower stratosphere, particularly in the region of the south East Asian warm pool.  A high rate of uplift results in he sudden appearance of ozone above 100 hPa and a steep increase in temperature above that pressure level. At 100 hPa only 10% of the atmosphere by weight lies above while 90% is below.  In terms of distance there is 15 km of atmosphere below and another 15 km to get to the 10 hPa pressure level so the graph exaggerates the rate of increase in temperature with altitude above the tropopause.

At no other latitude do we see as steep an increase in temperature in the stratosphere. At no other latitude is the stratosphere as elevated at its inception.

At the poles in winter the temperature of the air falls to minus 85°C. Convection over the inter-tropical convergence keeps ozone so much at bay as to produce exactly the same temperature, -85°C at 15 km in elevation.

Notice that the month to month variation in the temperature of the stratosphere over the I.T.C. at 100 hPa and higher is greater than is seen in the troposphere below.  At 100 hPa temperature is depressed in December and elevated in August when ozone partial pressure increases strongly outside the margins of the Antarctic polar vortex. This testifies to the vigour of mixing processes in the stratosphere.

Equator to 10° south

0-10S

Between the equator and 10° south latitude the thermal structure of the atmosphere is very similar to that at the inter-tropical convergence.

10-20° south

10-20S

At 10-20° south latitude a slight reduction in the lapse rate above 300 hPa indicates the presence of ozone in the atmospheric profile.

A temperature of about minus 30°C at 300 hPa is common to latitudes below 20°.

At 100 hPa temperature is warmer by a few degrees than at the I.T.C. The black dotted line has a common length in all diagrams. The minimum or ‘cold point’ warms as latitude increases reflecting an increase in the ozone content of the air with increasing latitude.

20-30° south

20-30S

At 20-30° south latitude where high surface pressure is the rule, the presence of ozone appreciably reduces the lapse rate above 300 hPa. At 300 hPa the atmosphere is slightly cooler than it is in the tropics.

The temperature at 100 hPa is warmer than in the tropics indicating more  ozone in the air at 100 hPa.

Between the months of August and November in late winter and spring, the ‘cold trap’ and the stratosphere in general is warmer than it is in summer indicating enhanced descent of ozone in high pressure cells at the particular time of the year when ozone partial pressure peaks outside the margins of the Antarctic polar vortex driving a shift of atmospheric mass away from the poles and towards these latitudes. An enhanced rate of descent from the stratosphere brings ozone into what has been hitherto regarded as the ‘troposphere’. If the word troposphere is intended to indicate the absence of ozone to the point where the lapse rate is unaffected then plainly we have a dilemma. The terminology is no longer appropriate to circumstances at this latitude and even less so in higher latitudes. This dilemma can be avoided if the term ‘troposphere’ is  used in reference to truly tropical latitudes and the word ozonosphere is used to indicate air that is warmed by ozone, at this latitude well below the cold point from about 300 hPa or eight kilometres in elevation, less again in zones of low surface pressure. What we have here is data for the average of high and low pressure cells at this latitude.

By virtue of its effect on cloud cover the relatively amplified increase in temperature aloft drives temperature variations at the surface. The mechanism behind the relationship between increased surface pressure anomalous warming at the surface is described in terms of anomalous increases in geopotential height and surface temperature in chapter 3 entitled ‘How the Earth warms and cools naturally’.

30-40° south30-40S

At 30-40° south latitude the presence of ozone markedly reduces the lapse rate of temperature with elevation above the 300 hPa pressure level.

40-50° south40-50S

At 40-50° south latitude the temperature of the ozonosphere at 100 hPa is considerably warmer than at lower latitudes and particularly so in winter.

The temperature at 300 hPa is very little different between 40-50° of latitude and 70-80° of latitude despite cooling at surface with increasing latitude indicating that this is indeed part of the ozonosphere. This warming occurs in the absence of mesospheric air in the summer season and more so in winter when cold mesospheric air is present. However there is obvious cooling of the ozonosphere above 100 hPa due to the influence of mesospheric air in winter the depression of air temperature increasing with elevation. Looking back we see that this trend emerged at 30-40° south latitude. The mechanism by which mesospheric air reduces the temperature of the ozonosphere beyond the margins of the polar vortex that is traditionally seen as containing it (cannot get out), involves both mixing and the chemical erosion of ozone by NOx. This process is fundamental to the long term evolution of ozone partial pressure in the ozonosphere and the temperature at the surface of the planet because it affects the Earth’s cloud albedo. It is the diminution of the flow of mesospheric air over time that has allowed ozone partial pressure to build in high southern latitudes and with it surface temperature and the volume of energy stored in the global oceans. The build in ozone partial pressure has produced a dramatic fall in surface pressure in high latitudes and a less dramatic but highly influential increase in surface pressure and energy gain in the mid latitudes.

The containment of mesospheric air within the polar vortex is an essential requirement if the Earth system is to be entirely self contained and free of influences from our highly variable local star….the sun. Certain people who wish to drive a political agenda will hang on to that notion like a dog with a bone. These people will not want to know about stratospheric processes.

At 40-50° south ozone drives a halving of the lapse rate above 300 hPa and a 10° C increase in the temperature of the cold point by comparison with latitudes only 10° closer to the equator. The lapse rate is particularly curtailed and the temperature of the cold point is particularly affected in the winter/spring period. Temperature above 300 hPa plainly relates more to polar atmospheric processes than surface temperature at this latitude.

So far as the use of the term ‘tropopause’ is concerned we must note that the ‘cold trap’ is unequivocally located in the stratosphere and is further elevated in late winter–spring (reduced descent of mesospheric air). It is warmer in winter than in summer. It is no indication of a ‘boundary’ between spheres of interest climatically. That ‘boundary’ is now to practical intents and purposes  at 300 hPa and the cold point will be lower when surface pressure is lower, as observed by the French balloonist Debort who discovered ‘the stratosphere’ in the 1890’s.  The notion of a ‘tropopause’ is devoid of content in defining the character of the atmosphere in mid latitudes and should be abandoned. The use of the term is rooted in a failure to observe the dynamics that determine the thermal structure of the atmosphere and the origins of the surface pressure regime. We abandoned the use of the term ‘isothermal layer’ as a description of the stratosphere when we found that it is by no means equal and we should abandon the use of the term tropopause and troposphere when we refer the atmosphere outside the tropics. These terms mislead and result in sloppy thinking.

At 40-50° south latitude the marked variation in the temperature of the stratosphere at 10 hPa across the year reflects the impact of the pulse in ozone partial pressure outside the polar vortex where 10 hPa temperature rises quickly to be very close to its annual peak and surface pressure falls to its annual minimum in September-October.

Seventy percent of the depth of the atmospheric column lies above the 300 hPa level at this latitude. It stretches between 8 and 30 km in elevation.

Warmer temperature in the lower stratosphere between June and October is the product of the increase in ozone partial pressure across mid and high southern latitudes in late winter-spring.   Mass transfer from the summer hemisphere and the high latitudes enhances surface pressure in the mid latitudes of the southern hemisphere in winter. The transfer of mass from high latitudes involves enhanced uplift due to ozone heating affecting the entire atmospheric column. That which ascends must descend and it does so in the mid latitudes. The rate of descent and the surface area of descending air is simply a function of the dynamics of ascent in the near polar atmosphere. Again we see a dynamic affecting the Earth’s albedo, stronger at this latitude than at 30-40° south latitude.

50-60° south

50-60S

At 50-60° south we enter the domain of the ozonosphere proper. The lapse rate is diminished above 500 hPa due to appreciable ozone in the upper half of the atmospheric column.  Regional density differences in the stratosphere promote strong uplift. This is the domain of the Polar cyclone that is generated  between 50 and 70° south.  The ozonosphere drives cyclogenesis, the distribution of atmospheric mass, short and long term weather variations and the evolution of the planetary winds. The notion that the ‘troposphere’ is the ‘weather-sphere’ at these latitudes is silly. None of the circumstances that give this term relevance  in the tropics apply at 50-60° south. The surface itself is very cold. The near surface atmosphere is cold and dry. Cloud is associated with uplift at the junction of warm wet and cold dry air masses. Convection originates in the ozonosphere by virtue of the behaviour of ozone as a greenhouse gas. Heating is then assisted by the release of latent heat associated with frontal activity. Cyclones move equator-wards tending to maintain the distinctive differences that maintain their vorticity until they run out of ozone aloft and moisture below.

The ‘cold point’ that is named the ‘tropopause’ in low latitudes is located within the stratosphere in all months. In June it is found above 10 hPa. As an indicator of the ceiling for convection due to the release of latent heat of condensation it is irrelevant. Wet air never reaches this altitude. The cold point is much warmer than it is in the tropics. The air is very much drier in high latitudes and precipitation is consequently light. But the elevation of the cold point materially assists the process of convection whereby lower density air is squeezed upwards. Convection affects the entire atmospheric column rather than being confined to the atmosphere near the surface. At latitudes pole-wards of 50° south we find the true weather-sphere,. This is the domain of the roaring forties the furious fifties and the screaming sixties. The enormous forces operating aloft are muted at the surface but still rock us back on our heels.

Polar cyclones owe their origin to heating of the atmospheric column by ozone. Heating occurs at all elevations where ozone is found, both above and below the cold point. This heating is driven by long wave infra-red emissions by the Earth itself varying little between day and night, and via energy redistributed polewards by the oceans and the atmosphere so that outgoing radiation has a pattern of annual variation  much less extreme than the variation in the energy supplied in the form of short wave radiation from the sun.

In mid and high latitudes the Earth starts to act like a battery for energy storage and energy supply to the atmosphere at a relatively invariable rate. This energy performs work via the agency of ozone. That work is weather change if we are talking of short term effects and ‘climate change’ in the longer term. The stratosphere is now the ‘weather sphere’ because this is where weather is generated. The partial pressure of ozone evolves on very long time scales.

In climatology as presently taught, what happens in the lower half drives the upper half. Motions in the lower atmosphere condition the distribution of ozone in the stratosphere. This doctrine is absurd. People refer to a coupling process between the troposphere and the stratosphere. What troposphere would that be?

60-70° south60-70S

At 60-70° south latitude, the lapse rate is reduced below and above 500 hPa and we have a very warm cold point in summer and a cold point in winter that approaches the temperature of the mesosphere to which it is proximate. The temperature of the ozonosphere declines in winter due to the influence of mesospheric air that descends inside the polar vortex over the Antarctic continent. Ozone partial pressure increases strongly outside the margins of the polar vortex but the temperature of the air still falls away at 60-70° of latitude in winter.  The nature of the mesospheric air,  the variation in the exposed surface of this tongue of air and the interaction of this air with that in the ozone rich stratosphere determines the evolution of ozone partial pressure in the wider stratosphere in a process unrecognised in ‘climate science’. The tongue of mesospheric air is continually being abraded by a Jet Stream at the polar vortex and large portions escape beyond the margins of the vortex to be gradually absorbed into the ozone rich surrounding atmosphere. Jet streams are wavy discontinuous phenomena and the notion that this air is confined behind some sort of wall is …., not to put too fine a point on it, akin to a fairy tale.

The temperature  at 10 hPa rises quickly from July to be very close to its annual peak by October-November, well before midsummer. Ozone partial pressure outside the polar vortex peaks in October as the tongue of mesospheric air retracts in Spring. This is in part a function of change in surface pressure as atmospheric mass swings back to the now swiftly cooling northern hemisphere. The resulting very late accumulation of ozone despite the fact that the pole is now in full sunlight brings the temperature peak forward in time so that it is only loosely related to the angle of incidence of the sun. See the diagram below for the annual evolution of 10 hPa temperature according to latitude. This diagram represents a 1948-2014 average and conceals change that has brought the temperature peak forward over time, the subject of later chapters.

10hPa T by Lat

The accumulation of ozone in the atmosphere outside the polar vortex from mid winter through till the spring equinox relates to a diminishing influence of the tongue of mesospheric air over the pole at this time of year and the consequent enhancement of ozone partial pressure outside the vortex. As ozone partial pressure peaks the vorticity of the overturning circulation brings raw mesospheric air deeply into the lower stratosphere and an ozone hole manifests, in truth it has been growing in size since March but at this time of the year it is squeezed into a narrower profile.  This is veritably the hole in the donut. Those who talk ‘hole’ seem to be blind to the substantial donut that surrounds it. They have little appreciation of atmospheric dynamics in high latitudes. Chemists need training in atmospheric dynamics if they are to be relevant and helpful so that they avoid the unpleasantness involved in offering themselves as unwitting shills to environmental activists.

Heating of the atmospheric column by ozone results in a planetary low in surface pressure at 60-70°south latitude that is present in all months but most extreme in September/October (see below). There is no counterpart to this in the northern hemisphere, just patches of low surface pressure over bodies of water over a broad range of latitudes. Observe that all the surface heating and the release of latent heat in near equatorial latitudes is incapable of driving surface pressure to the lows seen in the high latitudes of the northern hemisphere, let alone the extreme pressure deficit seen on the margins of Antarctica. It is not the Hadley cell that drives the atmospheric circulation, it is not the heating and uplift in the tropics, it is heating by ozone in high southern latitudes.  Hadley cell dynamics are determined according to the extent of atmospheric shifts from high latitudes because the Hadley cell expands with surface pressure. The ring like modes that characterise atmospheric shifts are a response to the distribution of ozone in high latitudes. The mechanics of the global circulation is driven not from the equator but from the poles and the Antarctic pole in particular. This is the reason why this chapter focusses on the southern hemisphere.

OCT SLP

Source: http://ds.data.jma.go.jp/gmd/jra/jra25_atlas/eng/indexe_surface11.htm

As noted repeatedly, the depression of the temperature of the ozonosphere over the pole in winter is due to the descent of very cold, relatively ozone deficient air from the mesosphere. This air is mixed into the mid latitude flow on the margins of the polar vortex by what is referred to as the Jet Stream that pares away at the margins of the tongue of mesospheric air. There is a knock on effect via chemical erosion of ozone by NOx species (NO, NO2) from the mesosphere. It is at 60-70° south latitude that the interaction primarily occurs. That interaction is the engine room of climate change.

70-80° south
70-80S

At 70-80° of latitude the near surface air is warmer than the surface itself. Its warmth is due to transport from warmer latitudes by the westerlies and the presence of ozone throughout the profile. Slow descent is the order of movement within the atmospheric column enhanced  in the winter, when surface pressure is high and retarded or stalled completely when it is low. The lapse rate above 850 hPa is considerably flattened and in this cold desert with sparse precipitation there is little release of latent heat to contribute to that flattening. Ozone is present throughout the profile.

Practically speaking the entire profile is part of the ‘ozonosphere’ that continues into the mesosphere. Atmospheric dynamics are not related to the coupling of something that exist with  a mental construct that is locally irrelevant.

It is sometimes remarked that we do not understand the coupling of the troposphere and the stratosphere in high latitudes. I have a large dam on my property in which I swim. I have looked intensively for a Bunyip without success. We can give up looking for a tropopause in high latitudes. It’s not a favourable environment for that beast. Its far too cold and dry.

Winter air temperatures are markedly affected by the descent of very cold air from the mesosphere that operates to a schedule unrelated to the march of the sun or the duration of the polar night that runs from March 21st through to September 21st. The schedule is much affected by the overturning of the atmospheric column at and beyond the polar vortex. This phenomenon is driven by the ozone content of the air.

The cooling due to the descent of mesospheric air is episodic as is evident in the diagram below. The flip side of that coin is called a sudden stratospheric warming.  A warming occurs when surface pressure falls away, the tongue of mesospheric air retracts and the space that it formerly occupied is taken by ozone rich air. The polar vortex and the jet stream contract towards the pole, the westerlies stream further polewards and high latitudes warm accordingly. This is the ‘Arctic Oscillation/ Northern Annular Mode/Atlantic Oscillation or the SAM’ in action. Meteorologists however, with their noses very close to their weather maps, converse together talking about the waviness of the jet stream, the incidence of so called blocking events and Arctic outbreaks.60-90T

Source:http://www.cpc.ncep.noaa.gov/products/stratosphere/strat-trop/

80-90° south

80-90S

At 80-90° south the main dynamic affecting the temperature of the atmospheric column is the variable presence of very cold, ozone deficient air descending from the mesosphere. At this latitude it is the interaction between the mesosphere and the stratosphere and whether the air is descending or ascending that determines the temperature profile from the surface upwards.  December is the warmest month at 10 hPa due to relatively enhanced ozone in high latitudes, a near static atmospheric column gently ascending and the relative proximity of the sun bringing a 6% increase in solar irradiance by comparison with July.  There is a reversal of the circulation at 10 hPa in late December as the descent of mesospheric air finally stalls.  The cessation of a regime of vigorous interaction with mesospheric air results in a relatively invariable temperature regime from 100 hPa through to 10 hPa.  In November, very regularly from one year to the next, as the Antarctic closes up shop, the action centre shifts to the Arctic.

Enhanced descent of the atmospheric column containing ozone warms at the 600 hPa pressure level, particularly in winter/spring the cycle in temperature at this level influenced by descent rates, penetration ratios and the flux in ozone partial pressure.

At 300 hPa the Antarctic stratosphere is warmest in February reflecting enhanced long wave radiation and the temporary absence of mesospheric air from the circulation until it enters again, in March. Accordingly, the range of temperature is minimal at all levels above 300 hPa between February and March (see below).

At 850 hPa  the temperature peak is in January driven by the march of the sun.

It is plain that other than quite close to the surface, the forces responsible for temperature and ozone content of the upper and lower portions of the atmosphere are very different.

Back in the 1940s the Antarctic ozonosphere used to be conditioned by the presence of a tongue of mesospheric air throughout the year. At that time 10 hPa temperature was very much cooler than it is today.1hPa T variability10hPa variability in T

30hPa T variability

Inspecting the three diagrams above, we can infer that variability increases the closer one gets to the mesosphere. It is mesospheric air that is the source of that variability and it dances to the tune of surface pressure variation, a good indicator of the vorticity of the overturning, ozone driven circulation.

CLIMATE CHANGE10hPa T 1998 on

Change in the rate of uplift in the stratosphere (and descent from the mesosphere) associated with ozone heating outside the margins of the polar vortex occurs on all time scales but is most active in the month of July and August as is apparent above. It is at this time of the year that the interaction between the stratosphere and mesosphere over the Antarctic pole is most variable. The decline in the temperature of the Antarctic stratosphere at 10 hPa since 1998 indicates that mesospheric air is driving down the ozone content and the temperature of the ozonosphere at 10 hPa over time. This heralds cooling. An Earth system that is already on the cool side will become colder. Fortunately, mankind has many tools at his disposal to survive and prosper in adverse circumstances. Clothing helps. Warm slippers and thick socks keep the toes warm and we have a good supply of cheap fuel to keep interior of our shelters warm. In the absence of viable battery storage storable fuel needs to be available both day and night, when the sun does not shine and the wind does not blow. There is no need to fast track so called renewable energy technologies with massive subsidies at the taxpayers expense. There is no ‘carbon pollution’ problem. We are in a regime of carbon enrichment that will serve all species well, including the polar bears that will find more to eat in summer but will unfortunately have to go hungry for a longer period in winter.

A note for theorists: The temperature of the stratosphere at 10 hPa cannot vary on the time schedule and in the manner seen in the last graph according to internally generated ‘planetary waves’.  That is a logical absurdity. Yes, waves there are, but in terms of modes of causation for the temperature of the stratosphere, look elsewhere. Bottom up thinking represents a failure to grasp the reality of ozone flux over time and its relationship with surface pressure, an inability to appreciate the factors responsible for the increase in ozone partial pressure in winter and factors responsible for the variability in incursions of mesospheric air. It represents an inability to grasp the importance of NOx in mesospheric air, the dynamics behind the jet stream and the origins of the ‘ozone hole’. Bottom up thinking makes it absolutely impossible to grasp the cause of the ‘annular mode’ phenomenon. It makes it impossible to appreciate the fact that the planetary winds evolve on all time scales changing the basic parameters of the climate system. Above all, bottom up thinking makes it impossible to model the atmosphere numerically. It dooms us to failure. It opens us up to superstition and exploitation. In general, it’s a disaster. Climate change is manifestly ‘top down’.

2014 is not a typical year. Every year is different. The geography of the stratosphere evolves over time. As we will see the influence of the stratosphere is indelibly imprinted on the surface temperature record.

 

 

In thanks to Stephen Wilde

To see the context refer to the post ‘Heresy and orthodoxy’ and the comments attached thereto: It’s here.

Just a bit of background first up. The sources of convection in the atmosphere are:

  1. Heating at the surface.
  2. Heat released to the atmosphere via condensation of water vapour.
  3. Heating due to the absorption of infra-red radiation in the 9-10 micrometre band by ozone.

Of these three, the most influential agent of convection is ozone but you won’t hear that in the annals of climate science so its not much good Googling the phenomenon.

Gordon Dobson who first measured ozone in the atmospheric column observed that low pressure cells had greater total column ozone than high pressure cells.

We are discussing the movements of the atmosphere and whether and to what extent the stratosphere is ‘stratified’, stable and to that extent unimportant in terms of weather and climate at the surface.

Dear Stephen,
Thanks for your comment. It takes guts to speak your mind and I respect that. You are always welcome here. You have impeccable manners.

Southern Hemisphere winter: There is a descent of very cold mesospheric air inside the polar vortex that reaches down to perhaps 300 hPa. The air is very cold throughout its profile and it gently descends. However, if we look at the temperature at 1 hPa in June 2015 it was -32°C and at 70 hPa -73°C . So, it is warmer at the top of the column than below and with that profile we would expect that it would be ascending.

Southern hemisphere summer: At this moment temperature at 1 hPa over the polar cap (65-90°C) is +6°C at 1 hPa, at 10 hPa it is -26°C , at 30 hPa it is -29°C, at 50 hPa it is -36°C and at 70 hPa it is -40°C. Directly over the pole, the air at 1 hPa is warmer than the average for the polar cap and warmer than the air over Australia or the Equator. The air is gently ascending with core ascent over the pole. Air from the mesosphere is excluded. It is in the state that some refer to as following a ‘final warming’ that happened in December. By March, this situation will revert to the winter pattern. Seventy years ago there was no final warming, no summer pattern.

Whether the air ascends or descends in the stratosphere over the pole is not a function of its temperature profile. It is a function of the strength of the ascent above 500 hPa outside the vortex where the presence of ozone is much enhanced in winter, strongly heating the atmosphere. It drives the density of the air above 500 hPa so low as to result in surface pressures down to 980 hPa in the entire band of latitude 60-70° south. It is the rate of ascent in this latitude band that forces descent over the polar cap and in the mid latitude high pressure cells. Ascent aloft forces ascent below 500 hPa all the way to the surface. The result is the constant presence of 5 or 6 Polar Cyclones of an intensity that equates to a regular tropical cyclone.

In winter the northern hemisphere heats very strongly driven by land masses that return heat to the atmosphere as fast as energy accrues at the surface. So, atmospheric mass shifts strongly to the southern hemisphere. As a result surface pressure over Antarctica reaches a resounding planetary maximum. Off the coast of Antarctica at 60-70° south ozone forces surface pressure to a resounding planetary minimum at exactly the same time. This shifts atmospheric mass from high southern latitudes to low southern latitudes dramatically increasing atmospheric pressure in zones that already experience high surface pressure.

But there is a big difference in how this circulation affects the ozone profile. What goes up must come down. Ozone that ascends into the upper stratosphere via a Polar Cyclone must come down somewhere. It is precluded from descending over the pole. That parking space is occupied by low ozone content, high NOx air from the mesosphere. So, it descends in the very broad high pressure cells that circulate between the equator and 40° of latitude at this time of the year where the body of air involved is so large that it much dilutes the the descending ozone. Nevertheless, ozone warms the entire stratosphere in these latitudes so that it is warmer in winter than it is in summer. That ozone descends into the troposphere affecting cloud cover.

So, just forget about ‘stratification’ in the stratosphere. The circulation throughout the entire atmosphere is driven by ozone that accumulates in the winter hemisphere. The base state of surface pressure is determined by the distribution of land and sea and the revolution of the Earth around the sun. The flux of ozone partial pressure driven by the highly variable interaction between mesospheric and stratospheric air at the winter pole works variations on that base state.

The accumulation of ozone outside the vortex, strongest on the margins of Antarctica,but occupying the latitude band 50-90° south has driven a 15 hPa loss of surface pressure over Antarctica in the last 70 years, in the process further opening the natural clear sky window over the Southern Oceans.

The good (or is it bad) news is that the process stalled about 1998 and is currently reversing. This is reflected in the gradual decline in the temperature of the stratosphere in high southern latitudes currently under way. Outgoing long wave radiation as measured at the top of the atmosphere peaked about 1998 and has been up and down since that time but nevertheless on a plateau. Tropical sea surface temperature is down over the last decade is down in eight of the 12 months of the year. These are the months where surface temperatures are most affects by the rate of entry of mesospheric air into the stratosphere in high latitudes.

What worries me is that the people who advise governments on climate related matters are not driven by observation and deduction but by ideology. We fear the followers of Allah but there are people equally determined, equally ruthless, in their demeanour the latter day descendants of Joseph Goebbels but without his swagger, and they occupy the high ground. These people will not be swayed by reason. They are social engineers with an objective in mind. To these people, the end justifies the means. There is no subtlety to them. They are brutes.

Stephen, thanks for the opportunity to make this comment. But for you I would have devoted the time to something else entirely and perhaps much less fun.

3 HOW THE EARTH WARMS AND COOLS-NATURALLY

From the outset let me say that my investigations suggest that the ‘Greenhouse Effect’ is not something that we have to contend with in atmospheric reality. There is another mode of climate change that appears to be responsible for the change in the temperature of the globe over the period of record. That mode of change is capable of explaining variations in both the short and long term in both directions,  both warming and cooling. It can explain warming in one place and simultaneous cooling in another. In short it is very well adapted to explain the climate changes that we observe from daily through to centennial time scales ……. and to do so, exclusively and completely.

THE RELATIONSHIP BETWEEN OZONE, SURFACE PRESSURE AND GEOPOTENTIAL HEIGHT

Geopotential height is a measure of the elevation of a pressure level in the atmosphere. Low heights indicate low pressure zones where the lower atmosphere is dense and cool. High heights indicate a high pressure zone where the lower atmosphere is warm and relatively rarefied.

At a surface pressure of 1000 hectopascals (hPa) the 500  pressure level is located at 5 kilometres in elevation. The upper half of the column (above the 500 hPa level) runs from 5 km through to the limits of the atmosphere at about 350 km. But 98% of the upper portion is located between 500 hPa and the 10 hPa pressure level that is found at an elevation of just 30 kilometres. You can walk 30 km in six hours, jog there in three or get there by bicycle in an hour and a half. From a good vantage point in clean air you can see objects that are 30 km away. As surface dwellers we tend to imagine that the atmosphere is vast. Its not.

Below, we have a representation of the temperature of the atmosphere above the equator in 2015. Notice the location of the 500 hPa and the 10 hPa pressure levels, the gradual decline in temperature from the surface to the 100 hPa pressure level and the very gradual increase above that level. That temperature increase is due to the presence of ozone that, as a greenhouse gas, is excited by long wave radiation from the Earth. Importantly, the change in the temperature in the upper levels is not smooth, its perturbed, and if we were to look at the data across the years and decades we would see strong variability.

This is the situation at the equator where the influence of ozone cuts in at about 15 kilometres in elevation.At the poles it cuts in at half that elevation.

atmosphere over equator

Gordon Dobson who first used a spectrophotometer to measure Total Column Ozone noticed that the distribution of ozone varies with surface pressure. Specifically, the atmospheric column where surface pressure is low is composed of a lower portion that is cold and dense. Low pressure cells originate in high latitudes where the near surface air is cold and dense.  But, the upper portion is rich in ozone to the extent that the number of molecules in the entire column is reduced giving rise to low surface pressure. The paradox is that cold dense air in the lower part of the atmospheric column is accompanied by warmer, relatively less dense air aloft. It is the inflation of the upper half of the atmospheric column, due to its ozone content, that is responsible  for low surface pressure.

Based on Dobson’s observations we can suggest a rule of thumb. It is this: The variation in the density of the upper half of the atmospheric column, due to its ozone content, accounts for variations in surface atmospheric pressure. You might not realise it at this point but this observation turns climatology, as we know it today, precisely on its head. Let me reiterate the point in a different form of words. The ozone content of the upper air drives surface winds. Here is another formulation: The character of the troposphere is determined in the stratosphere.

This was the interpretation of the atmosphere that was gaining ground prior to the 1950’s. But the world of climate science turned from observation towards mathematical abstraction in the 1960’s and has never looked back to take into account observational realities.

THE MID LATITUDES

High pressure cells are found mainly over the oceans in the mid latitudes. They create clear sky windows. The surface warms because more sunlight reaches the surface rather than being reflected by clouds. Surface pressure is high because of a deficiency in ozone in the more extensive upper half of the atmospheric column that is accordingly relatively dense. Despite relatively low density in the lower part of the column, the enhanced density of the upper half of the column renders the weight of the entire column, and therefore surface pressure, superior.

Surface pressure is intimately associated with surface weather and climate. Surface pressure governs the planetary winds. It follows that the planetary winds evolve according to change in the ozone content of the upper half of the atmospheric column. Yes, in the terms that we are fond of employing, the stratosphere is the troposphere. The stratosphere is where weather and climate is determined. As Gordon Dobson observed back in 1924, weather   evolves according to the ozone content of the air. But the significance of his observation  was lost on those who replaced him. His successors were not observers but ideologues. The account of climate science became a servant of people with a social agenda is told here.

Indeed, the relationship between geopotential height,  surface pressure and surface temperature is intimate. In 2002 Polanski  found that he could accurately reconstruct 500 hPa heights using just sea level pressure and surface air temperature data. He noted that the reconstruction  was more accurate in winter and in mid to high latitudes where variability in both surface temperature and pressure is greater. The reconstruction was less accurate in low latitudes and indeed wherever variability in surface temperature and pressure is low. You can see an account of Polanski’s research here:(http://research.jisao.washington.edu/wallace/polansky_thesis.pdf). This is an excellent instance of deduction from result back to cause. At this point, just remember that surface pressure, geopotential height and surface temperature are linked with surface temperature a product of pressure and geopotential height.

CLIMATE CHANGE

Now to the nitty-gritty of surface temperature variation….climate change:

The three maps below show:

  1. The spatial distribution of geopotential height anomalies in January 2015
  2. Anomalies in the temperature in the lower troposphere in January 2015
  3. Surface temperature anomalies in January 2015500hPa heightsLT Jan 2015

GISS Surface temperature January 2015Map Sources: http://data.giss.nasa.gov/gistemp/maps/    http://www1.ncdc.noaa.gov/pub/data/cmb/sotc/drought/2015/01/hgtanomaly-global-201501.gif, http://nsstc.uah.edu/climate/  http://nsstc.uah.edu/climate/

The first map shows geopotential height anomalies. The second map indicates that the lower troposphere is indeed anomalously warm where 500 hPa heights are anomalously elevated.  The third map indicates that the surface is anomalously warm where heights are anomalously elevated. Remember that high heights indicate a high pressure zone where the lower atmosphere is warm and relatively rarefied.This gives rise to a rule of thumb that accords with common sense and daily observation. The surface warms when atmospheric pressure increases, the air warms and cloud cover falls away. 

The question arises: What causes atmospheric pressure to increase in the mid latitudes. The short answer is a persistent shift in atmospheric mass from high latitudes, especially from the winter hemisphere where ozone proliferates reducing the density of the upper part of the atmospheric column and  so reducing surface atmospheric pressure. For those of you familiar with the notion of the ‘Annular Modes’ or its northern hemisphere manifestation, the ‘Arctic Oscillation’ or perhaps the North Atlantic Oscillation I am here describing the causation of all these phenomena. All involve a change in the relationship between surface pressure in the mid latitudes and that in high latitudes. These are recognised as the dominant modes of natural climate change on all time scales…..cause unknown!

A TOP DOWN MODE OF CAUSATION FOR SURFACE TEMPERATURE CHANGE

The figure below shows the evolution of temperature at the surface, 600 hPa, 300 hPa and 200 hPa over the Indian Ocean between Africa and Australia at latitude 30-40° south over the period 1976 through till December 1990. In order to facilitate comparison at very different temperatures the data is shown as anomalies with respect to the 1948-2015 average.

Air T in a column

Source for both graphs, above and below: http://www.esrl.noaa.gov/psd/cgi-bin/data/timeseries/timeseries1.pl

It is plain that the higher the elevation the more wildly does the temperature gyrate and not always in concert with the air at the surface.This is also apparent when we compare anomalies in temperature near the surface and at 600 hPa as seen below.Indian Ocean surface and 600hPa T

Plainly, the variation of the temperature at the surface does not explain the variations at 600 hPa. Temperature at 600 hPa is affected by the ozone content in the upper half of the atmospheric column. The ozone content of the stratosphere is determined in the upper atmosphere in interaction with the mesosphere (where the ozone content and the temperature of the air diminishes with increasing altitude) and the ionosphere where short wave solar radiation ionises the atmosphere making possible the formation of ozone and other compounds injurious to ozone).

Indeed, it is un-physical (an impossibility) that a small temperature increase at the surface could be responsible for a greater temperature increase aloft. The upper air is independently warmed by ozone that absorbs long wave radiation from the Earth. Warming and cooling of the air aloft is independent of change in the temperature of the air at the surface and the prime determinant of surface atmospheric pressure (our first rule of thumb) and surface temperature.

To reiterate: High pressure cells are characterised by down-draft.  Air can hold water vapour according to its temperature. Descending air is warming due to increasing compression. Descending air will not produce cloud. To the extent that the  atmospheric column has  cloud it will thin as the air warms.This is why our second rule of thumb works so well. To remind you here it is again: The surface warms when atmospheric pressure increases and cloud cover falls away. 

It follows that surface temperature in the mid latitudes,  a zone inhabited by high pressure cells, much subject to minute variations in surface pressure as atmosphere shifts to and from the poles , very much depends on the ozone content of the air aloft.

WARMING IN HIGH LATITUDES IN WINTER

The explanation given for the origin of warming in the mid latitudes via loss of cloud cover does not explain warming in the total darkness of the polar night that is pretty obvious in the third diagram above. Why is it so? The mode of causation follows from the minute increase of pressure in mid latitudes and a dramatic fall in high latitudes. It involves the replacement of  cold with warm air. Lower surface pressure in higher latitudes and higher in the mid latitudes involves a change in the origin of the air that always flows from high to low pressure. The solar energy that accrues in low latitudes is constantly being redistributed to higher latitudes via the movement of the air. Exaggerate the movement from the equator to the pole by changing the surface pressure relationship and the pole warms.

The variation in the ozone content of the air in high latitudes, occurring in winter time is the source of change in cloud cover in the mid latitudes. It is also the origin of changes in the winds according to change in the pressure gradient between the equator and the pole. All we need to do to change the average temperature of the surface of the Earth is re-distribute the warmer air.

THE TASK AHEAD

Dobson’s observation that surface weather varies with total column ozone is a vital clue that leads us to an explanation of the origins of the natural variation in climate. Accordingly we should look carefully at the influence of ozone on the temperature and density of the upper air. Specifically, we must ascertain the particular altitude at which the presence of trace amounts of ozone begins to affect the temperature of the air (and therefore cloud cover) and whether and to what extent that altitude varies with latitude? The answer will lead, in time, because nothing happens as quickly as we might like it to happen, to a revolution in our understanding of the Earth system upon which man depends for his sustenance.

If an increase in the ozone content of the upper air can cause the temperature of the air to increase at the surface of the planet on a month to month basis then we must examine the long term evolution of the ozone content of the air to explain surface temperature change on annual, decade and longer time scales. Equally, we can study the evolution of surface pressure over time that tells us where the wind is coming from. Or indeed, we can simply study the change that occurs in the speed of the wind because that is related to its ability to convey energy from warm to cool locations.These are the central concerns of this work.

Quantifying change due to natural causes is an essential pre-requisite  to the determination of whether in fact, as is widely believed, man is spoiling his nest via the emission of so called ‘greenhouse gases’.

It appears to me, via a close examination of the surface temperature record across the globe that there is no background level of temperature increase that is underpinning the temperature increase (and decrease) that varies so widely (and so naturally) according to hemisphere, latitude, location and season. That natural mode of change is what we need to explain.If we don’t, we will be at the mercy of of  those who want to attribute any and every change to the works of man in order to promote their own, in many instances, expensive and damaging agendas.

 

 

 

2 ASSESSING CLIMATE CHANGE IN YOUR OWN HABITAT

Immediately beneath this sentence is the interface of the ESRL Website at: http://www.esrl.noaa.gov/psd/cgi-bin/data/timeseries/timeseries1.pl

ESRL interface

The interrogation that is entered in the form relates to sea surface temperature at 20-40° south latitude around the entire globe (0-360° longitude) taking into account every month of the year adjusting for the reducing circumference of the Earth as latitude increases, presented as a plot. That plot is below.Graph SST

I live at 34° south latitude and at this latitude there is mostly ocean rather than land. Home is on the south-west coast of Australia where the winds are mostly onshore. So, air temperature tends to follow sea surface temperature. I am a farmer and all farmers take a strong interest in climate. I grow grape vines and make wine. The wine expresses the variations in the climate from year to year. To make good wine, the best wine possible, I need to know what is going on. I am told that the climate is getting hotter and I may need to plant later ripening varieties to avoid damaging heat during the ripening period.

All that we can say about this data is that temperature has increased in both winter and summer. But spring and autumn is important to me. The vine leafs out in spring and the fruit matures in autumn. I need to dig deeper.

The data can be acquired in the form of an array of monthly averages as seen below. Its a long sheet of data and I show you just the top and the bottom of the sheet.

SST data top

SST bottom

I want to show you how to work with the raw data to get a much better idea of what is going on in your habitat. Since climate varies primarily according to latitude I define my own habitat, in the first instance, as a band of latitude. If you prefer, you can focus on just part of a latitude band and perhaps air temperature rather than sea surface temperature if you happen to live far from the sea. In this exercise I am going to focus on the entire band of latitude because I am interested in the way climate changes globally.

Copy the data directly from the ERSL website and paste using a simple ‘notepad’ format. Save this as a text file. This is what the notepad sheet looks like.

SST notepad

Next step is to import that data into a spreadsheet via the import wizard available in excel.Text import wizard

Below, the spreadsheet is represented in part with some calculations in red text and a graph of the data in red.

Annual average SST 20-40° south

I have added each months data from January through to December and divided by 12 to yield the annual average. Then I have plotted the column in red. What can we see:

  1. There has been an increase of 0.4°C in temperature in this latitude band over the last 67 years. However, this is within the range of the most extreme inter-annual variability (more than 0.5°C) so it is possible that the factor causing the temperature to swing between the years is also responsible for the whole of period change.
  2. Extreme inter-annual variability prior to 1978 and much less after 1978.

The expansion of the Hadley cell and the consequent southward migration of the mid latitude high pressure cells after 1978 is a feature than many observers have remarked upon. High pressure cells dominate this band of latitude. Summers are dry. In winter fronts attached to low pressure cells that impinge at this time of the year bring rain. The lack of variability post 1978 suggests a reduced incidence of cold winds from the south.  High pressure cells are relatively cloud free. If there is less cloud it can’t come and go. With an expansion of the Hadley cell one would see fewer fronts associated with low pressure cells so the fluctuations in surface temperature would tend to diminish along with the rainfall. Indeed rainfall has declined by 15-25% depending on location.

AV Mth SST.JPG

By adding all Januaries and dividing by 68 (68 Januaries) the average temperature for the month of January over the period 1948-2014 is obtained. It is 22.32°C. Paste the formula across the page. Graph the result as the average monthly temperature.

Average daily temperature is sub optimal for photosynthesis (25°C is optimal) in all months but daytime temperature in the height of summer is almost warm enough to be optimal.  Growth of plants is very slow in the winter months. An extension of the warmth of February into the months of March through to June would increase plant productivity but unfortunately, without irrigation this can not happen. However, grape vines are hardy plants and this is their natural habitat and the best wines come from non irrigated vines. Less rain means less fungus and less spraying so it’s all good.

I want to see how sea surface temperature has evolved over the decades. The process is shown below. First copy and paste the average monthly temperature for the entire period to the head of the spreadsheet immediately adjacent and to the right of the raw data. Follow in the next row with a label for each month. In the next row calculate the difference between the raw data for a particular month and the average for that particular month for the entire period. For instance  raw data for January 1948 is a temperature of 21.957°C and the average for the entire period for the month of January is 22.32128, the difference being 0.36428°C. This statistic is the ‘anomaly’ with respect to the average for the entire period.

Anomaly 1948-56

I plot the anomaly for the period 1948-56 together with the average for that period of 9 years and you see it above. Its plain that this decade was cooler on average especially in April and May. I work through the decades.

When I get to the decade 1997-2006 I see this:

SST Anom 20-40S 1997-2006

The months that were very cool in the first decade are very warm in 1987-96. The months that were slightly anomalously cool in 1948-56 are still slightly anomalously cool.  This is interesting. If there is a greenhouse effect due to increasing carbon dioxide in the atmosphere why is there so small a temperature increase in spring and so large an increase in autumn over this sixty eight year period?

So, I plot the average for each decade and here it is:

Decadal change

It turns out that in the intervening decades, and in particular from 1957 until 1976 the first half of the year has been very much cooler than both the first and the last decade. There is very little change between the first and last decade. Much wider swings have occurred in the past. The decade 1977-86 was much warmer in spring and early summer than it is in the last decade. The decade 1997-2006 that saw some of the warmest years globally in terms of annual averages is the coolest within this particular band of latitude.

Obviously, there is a factor involved that can produce warming AND COOLING and climate change is not a one way train.

Obviously, annual averages are not the appropriate metric if we want to discover the sources of natural variation in climate. We need to focus on monthly data.

What is to come in this blog/book?

If you are genuinely interested in the question of whether man has an influence on the climate then read on.  If you want to know what the sources of natural climate variation are then read on. But if you would rather engage in a ‘willing suspension of disbelief’ as most of us do when we go to the movies or to church on Sunday, and you are ideologically committed to the notion that man is responsible for climate change and are not willing to consider any other possibility then this is not the place for you. In short order you will be confronted by things that will bother you and you will become uncomfortable.

If you can look at data and ask yourself ‘why is it so’ please come along for the ride.

 

 

1 HOW DO WE KNOW THINGS?

When we are  trying to understand how a machine or a process works we can approach via a study of each of its particular elements including its physical, chemical and metallurgical character, its motions, the sources of energy that drive the system and the lubricants that facilitate its smooth working.  That’s the long route.

By contrast just a moment or two of observation of the working machine can be revelatory.

In a flash we observe that the machine has two wheels; you sit on the seat, grasp the handlebars and provide energy with your legs going up and down. We witness its performance over time. It might be just a minute long, it might contain the going round in circles part, the climbing the hill part or the free-wheeling part and perhaps the falling off part. But just imagine how little we would learn if the only part we saw was the front wheel and the handlebars with the hands hanging on.

Until 1996 when a 48 year history of the atmosphere became available in the form of reanalysis data a portion of natural world was missing from the field of view. That portion was the mid to high latitudes of the southern hemisphere where the global circulation of the atmosphere is determined. Unfortunately, the United Nations International Panel on Climate Change had already made up its mind that man was the agent of change and disaster was at hand.

Via reanalysis, we can now see the entire structure of the atmosphere. It is apparent that the nature of the atmosphere changes over time. Today, in 2015 we have nearly sixty eight years of data. But it appears that we need at least two hundred years of data to see the workings of the atmosphere through its shortest cycle of change.

The Earth system can be known via the results that it produces even though the  sixty-eight year period of observation is short…comparable to that where the bike rider  settles into his seat, takes his feet off the ground and starts pedalling.

We don’t have to travel into the Antarctic stratospheric vortex and measure the concentration of NOx that erodes ozone to know what the Antarctic vortex is doing. We observe the perennial deficit in ozone in the southern hemisphere by comparison with the northern hemisphere and the long cycle of change in Antarctic surface pressure. Ozone partial pressure, the temperature of the stratosphere, the kinetic energy imparted to the atmosphere, surface pressure, wind velocity and the evolution of the planetary winds are inseparably linked. If the tongue of mesospheric air over the Antarctic shrinks away, less erosive NOx is drawn into the stratosphere and ozone partial pressure increases, the air warms driving a further fall in surface pressure in a circle of self reinforcement that has headed in the same direction for the last sixty-eight years, the entire period of modern observational record.

To all those earnest chemists who will maintain that the ‘ozone hole’ is due to the works of man I would say, stand back.  Appreciate that the ozone hole occurs at that time of the year when the ozone content of the southern stratosphere PEAKS outside the perimeter of the ozone deficient polar vortex that is loaded with mesospheric air. Yes, it PEAKS. Think about the circular motion of the atmosphere over the pole and what governs the presence of mesospheric NOx that erodes ozone. Appreciate the fact that, in winter, the entire atmospheric column from fifty to seventy degrees of latitude is rich in ozone throughout most of its depth. At this time the high latitude stratosphere takes on the role that the troposphere seems to perform in determining the movement of the air. The stratosphere becomes the ‘weather sphere’. Outside the tropics rules of thumb that enable us to differentiate between a ‘troposphere’ and ‘stratosphere’ no longer apply. In terms of convection, neither surface temperature nor the release of latent heat of condensation can explain convection in high latitudes. That role belongs to ozone. It is ubiquitous, unaffected by cold traps, has a ready supply of energy to drive warming both day and night and that energy is at the very peak of the spectrum of long wave energy emitted by the Earth at 9-10 µm, virtually unlimited in its supply. Hence the warmth of the stratosphere and the vigour of a polar cyclone.

Why is the stratosphere warm? Is it primarily because the ozone molecule absorbs at 9-10 µm serendipitously at the peak of Earth energy emission rather than photolysis by very short wave radiation from the sun that impinges in the main at the upper margins of the stratosphere above 1hPa? Is the warmth of the stratosphere that varies little between day and night, much less in fact than the variation at the surface, not the result of the constant emission of long wave radiation from the Earth itself, day and night and via the transfer of energy from low to high latitudes, across the seasons? How can we account for the fact that the mid latitude stratosphere is warmer in winter than it is in summer?

Gordon Dobson, who developed the use of a spectrophotometer almost a century ago, to measure total column ozone, discovered that ozone distribution mapped surface atmospheric pressure with 25% less ozone in the core of a high pressure system than at its perimeter. Zones of low surface pressure exhibit the highest total column ozone. Plainly there is more ozone in the upper air, and the stratosphere is warmer when surface pressure is low.  A cold core polar cyclone is a warm core polar cyclone aloft.  Is it not the warming aloft that drives uplift?  Indeed, warming in the stratosphere is linked to the creation of polar cyclones. Palpably ozone drives surface pressure and the high latitude jet stream. Ozone variation is therefore linked to the annular modes of inter-annual climate variation and its northern hemisphere manifestation, the Arctic Oscillation. Why, where and how do variations in ozone occur and at what time? Dobson established the fact that there is a direct relationship between ozone and weather phenomena. That was a vital clue as to the origin of climate change. That all important ‘clue’ just slipped through the cracks. It was replaced with a particular notion that, while it has no relation to what we actually observe, is a better fit to the ideology of the age. We choose to believe what we desire to believe.

We establish the presence of a high pressure cell of descending air by measuring atmospheric pressure at the surface. There is a zone of high pressure centred on latitude 30° in both hemispheres. But where is the head of a high pressure cell located? Is its head in the stratosphere, and at what level?  How does that play out in determining the quotient of cloud that shelters the Earth from the rays of the sun? If ozone came and went on a 200 year time scale what would that mean? Would we not need 200 years of observation to properly describe the climate of any particular place?

The temperature of the surface of the Earth will vary if there is change in either the input side or the output side. Changes on the input side can account for both warming and cooling. In the 1960s the northern hemisphere cooled and Antarctic summers have been getting cooler for the last fifty years. Logic and observation are important.

At particular places the direction of the wind changes coming from a warmer or a cooler place, it contains more or less moisture and there is more or less cloud to shield us from the burning rays of the sun. Surface temperature is intimately tied to the global circulation of the air and the distribution of cloud. This in turn is governed by shifts in atmospheric mass to and from Antarctica. Ozone is inextricably linked to surface pressure phenomena and shifts in atmospheric mass from high latitudes.

So far as the ‘greenhouse effect’ is concerned, is this mental construct compatible with cooling? The temperature of the surface across the entire globe varies strongly in winter tied to polar atmospheric processes that are inseparably linked to the arrival of the polar night and the intensification of the stratospheric circulation in winter. Is the greenhouse effect compatible with warming that occurs only in winter, only in one hemisphere? Is it compatible with a hiatus in warming. Is it consistent with the cooling of the entire system that is evident in the last decade? At a very basic level, we need to answer this very simple question: Can air that is free to move constitute an effective insulator? Or is it better described as a medium for energy transfer from one place to the other just like the ocean, except that in the case of the atmosphere the ‘other place’ is in the vertical dimension……’space’ where that energy is dissipated, never to return.

Science could be described as the practice of critical examination of the validity of the interpretations drawn from data. The problem with ‘climate science’ as it manifests in the works of the United Nations International Panel on Climate Change (I.P.C.C) is that it fails to offer a plausible explanation for the patterns of warming and cooling that we observe. In the 1960s and early 70s, the Earth warmed in the southern hemisphere while cooling in the northern hemisphere. Of what use is a brand of climate science that cannot explain the patterns of variation  that we actually observe?

Here is the ultimate kicker: The basis of the alarm concerning the way the globe has warmed over the period of record needs to be critically assessed at the most elementary level. Is the warming that has undoubtedly occurred beneficial or harmful? Looked at dispassionately, the tropics is the only location where the Earth is sufficiently warm in all seasons to enable photosynthesis to achieve peak rates of carbon assimilation. The remainder of the globe experiences temperatures that are sub optimal for photosynthesis for part of, or the entire year. Plants use carbon dioxide in the air to create complex carbohydrates that are the basis of the food chain upon which all species depend. Carbon dioxide at 400 ppm., from a plants point of view, is at a concentration that is very close to starvation levels. When CO2 concentration is enhanced, plants require less water and the entire planet greens. This improves the environment, a thoroughly desirable end. From the point of view of mankind, sitting at the head of the food chain, from the point of view of man as farmer, the Earth is cooler than is desirable.

What I offer in the chapters to come is a novel explanation of the real world of climate change. That explanation is grounded in the reality of temperature change as it is observed. If you are keen to see the book of about 30 chapters that I have written on this subject over the last year simply subscribe to this blog to receive it in serial form.

I want to make a difference. The sooner the better. Don Quixote is riding again and this time he is not tilting at windmills but building them at our expense. One would not mind perhaps if he did not have his hand in our pocket.

I need help to make a difference. If you could pass on the address of this blog to your friends that will materially help.

If there is anything that is unclear, obscure, badly expressed, poor grammar, lousy spelling or needs further explanation or you want to challenge my conclusions I want to hear about that too. Please email me erlathapps.com.au