In thanks to Stephen Wilde

To see the context refer to the post ‘Heresy and orthodoxy’ and the comments attached thereto: It’s here.

Just a bit of background first up. The sources of convection in the atmosphere are:

  1. Heating at the surface.
  2. Heat released to the atmosphere via condensation of water vapour.
  3. Heating due to the absorption of infra-red radiation in the 9-10 micrometre band by ozone.

Of these three, the most influential agent of convection is ozone but you won’t hear that in the annals of climate science so its not much good Googling the phenomenon.

Gordon Dobson who first measured ozone in the atmospheric column observed that low pressure cells had greater total column ozone than high pressure cells.

We are discussing the movements of the atmosphere and whether and to what extent the stratosphere is ‘stratified’, stable and to that extent unimportant in terms of weather and climate at the surface.

Dear Stephen,
Thanks for your comment. It takes guts to speak your mind and I respect that. You are always welcome here. You have impeccable manners.

Southern Hemisphere winter: There is a descent of very cold mesospheric air inside the polar vortex that reaches down to perhaps 300 hPa. The air is very cold throughout its profile and it gently descends. However, if we look at the temperature at 1 hPa in June 2015 it was -32°C and at 70 hPa -73°C . So, it is warmer at the top of the column than below and with that profile we would expect that it would be ascending.

Southern hemisphere summer: At this moment temperature at 1 hPa over the polar cap (65-90°C) is +6°C at 1 hPa, at 10 hPa it is -26°C , at 30 hPa it is -29°C, at 50 hPa it is -36°C and at 70 hPa it is -40°C. Directly over the pole, the air at 1 hPa is warmer than the average for the polar cap and warmer than the air over Australia or the Equator. The air is gently ascending with core ascent over the pole. Air from the mesosphere is excluded. It is in the state that some refer to as following a ‘final warming’ that happened in December. By March, this situation will revert to the winter pattern. Seventy years ago there was no final warming, no summer pattern.

Whether the air ascends or descends in the stratosphere over the pole is not a function of its temperature profile. It is a function of the strength of the ascent above 500 hPa outside the vortex where the presence of ozone is much enhanced in winter, strongly heating the atmosphere. It drives the density of the air above 500 hPa so low as to result in surface pressures down to 980 hPa in the entire band of latitude 60-70° south. It is the rate of ascent in this latitude band that forces descent over the polar cap and in the mid latitude high pressure cells. Ascent aloft forces ascent below 500 hPa all the way to the surface. The result is the constant presence of 5 or 6 Polar Cyclones of an intensity that equates to a regular tropical cyclone.

In winter the northern hemisphere heats very strongly driven by land masses that return heat to the atmosphere as fast as energy accrues at the surface. So, atmospheric mass shifts strongly to the southern hemisphere. As a result surface pressure over Antarctica reaches a resounding planetary maximum. Off the coast of Antarctica at 60-70° south ozone forces surface pressure to a resounding planetary minimum at exactly the same time. This shifts atmospheric mass from high southern latitudes to low southern latitudes dramatically increasing atmospheric pressure in zones that already experience high surface pressure.

But there is a big difference in how this circulation affects the ozone profile. What goes up must come down. Ozone that ascends into the upper stratosphere via a Polar Cyclone must come down somewhere. It is precluded from descending over the pole. That parking space is occupied by low ozone content, high NOx air from the mesosphere. So, it descends in the very broad high pressure cells that circulate between the equator and 40° of latitude at this time of the year where the body of air involved is so large that it much dilutes the the descending ozone. Nevertheless, ozone warms the entire stratosphere in these latitudes so that it is warmer in winter than it is in summer. That ozone descends into the troposphere affecting cloud cover.

So, just forget about ‘stratification’ in the stratosphere. The circulation throughout the entire atmosphere is driven by ozone that accumulates in the winter hemisphere. The base state of surface pressure is determined by the distribution of land and sea and the revolution of the Earth around the sun. The flux of ozone partial pressure driven by the highly variable interaction between mesospheric and stratospheric air at the winter pole works variations on that base state.

The accumulation of ozone outside the vortex, strongest on the margins of Antarctica,but occupying the latitude band 50-90° south has driven a 15 hPa loss of surface pressure over Antarctica in the last 70 years, in the process further opening the natural clear sky window over the Southern Oceans.

The good (or is it bad) news is that the process stalled about 1998 and is currently reversing. This is reflected in the gradual decline in the temperature of the stratosphere in high southern latitudes currently under way. Outgoing long wave radiation as measured at the top of the atmosphere peaked about 1998 and has been up and down since that time but nevertheless on a plateau. Tropical sea surface temperature is down over the last decade is down in eight of the 12 months of the year. These are the months where surface temperatures are most affects by the rate of entry of mesospheric air into the stratosphere in high latitudes.

What worries me is that the people who advise governments on climate related matters are not driven by observation and deduction but by ideology. We fear the followers of Allah but there are people equally determined, equally ruthless, in their demeanour the latter day descendants of Joseph Goebbels but without his swagger, and they occupy the high ground. These people will not be swayed by reason. They are social engineers with an objective in mind. To these people, the end justifies the means. There is no subtlety to them. They are brutes.

Stephen, thanks for the opportunity to make this comment. But for you I would have devoted the time to something else entirely and perhaps much less fun.

3 HOW THE EARTH WARMS AND COOLS-NATURALLY

From the outset let me say that my investigations suggest that the ‘Greenhouse Effect’ is not something that we have to contend with in atmospheric reality. There is another mode of climate change that appears to be responsible for the change in the temperature of the globe over the period of record. That mode of change is capable of explaining variations in both the short and long term in both directions,  both warming and cooling. It can explain warming in one place and simultaneous cooling in another. In short it is very well adapted to explain the climate changes that we observe from daily through to centennial time scales ……. and to do so, exclusively and completely.

THE RELATIONSHIP BETWEEN OZONE, SURFACE PRESSURE AND GEOPOTENTIAL HEIGHT

Geopotential height is a measure of the elevation of a pressure level in the atmosphere. Low heights indicate low pressure zones where the lower atmosphere is dense and cool. High heights indicate a high pressure zone where the lower atmosphere is warm and relatively rarefied.

At a surface pressure of 1000 hectopascals (hPa) the 500  pressure level is located at 5 kilometres in elevation. The upper half of the column (above the 500 hPa level) runs from 5 km through to the limits of the atmosphere at about 350 km. But 98% of the upper portion is located between 500 hPa and the 10 hPa pressure level that is found at an elevation of just 30 kilometres. You can walk 30 km in six hours, jog there in three or get there by bicycle in an hour and a half. From a good vantage point in clean air you can see objects that are 30 km away. As surface dwellers we tend to imagine that the atmosphere is vast. Its not.

Below, we have a representation of the temperature of the atmosphere above the equator in 2015. Notice the location of the 500 hPa and the 10 hPa pressure levels, the gradual decline in temperature from the surface to the 100 hPa pressure level and the very gradual increase above that level. That temperature increase is due to the presence of ozone that, as a greenhouse gas, is excited by long wave radiation from the Earth. Importantly, the change in the temperature in the upper levels is not smooth, its perturbed, and if we were to look at the data across the years and decades we would see strong variability.

This is the situation at the equator where the influence of ozone cuts in at about 15 kilometres in elevation.At the poles it cuts in at half that elevation.

atmosphere over equator

Gordon Dobson who first used a spectrophotometer to measure Total Column Ozone noticed that the distribution of ozone varies with surface pressure. Specifically, the atmospheric column where surface pressure is low is composed of a lower portion that is cold and dense. Low pressure cells originate in high latitudes where the near surface air is cold and dense.  But, the upper portion is rich in ozone to the extent that the number of molecules in the entire column is reduced giving rise to low surface pressure. The paradox is that cold dense air in the lower part of the atmospheric column is accompanied by warmer, relatively less dense air aloft. It is the inflation of the upper half of the atmospheric column, due to its ozone content, that is responsible  for low surface pressure.

Based on Dobson’s observations we can suggest a rule of thumb. It is this: The variation in the density of the upper half of the atmospheric column, due to its ozone content, accounts for variations in surface atmospheric pressure. You might not realise it at this point but this observation turns climatology, as we know it today, precisely on its head. Let me reiterate the point in a different form of words. The ozone content of the upper air drives surface winds. Here is another formulation: The character of the troposphere is determined in the stratosphere.

This was the interpretation of the atmosphere that was gaining ground prior to the 1950’s. But the world of climate science turned from observation towards mathematical abstraction in the 1960’s and has never looked back to take into account observational realities.

THE MID LATITUDES

High pressure cells are found mainly over the oceans in the mid latitudes. They create clear sky windows. The surface warms because more sunlight reaches the surface rather than being reflected by clouds. Surface pressure is high because of a deficiency in ozone in the more extensive upper half of the atmospheric column that is accordingly relatively dense. Despite relatively low density in the lower part of the column, the enhanced density of the upper half of the column renders the weight of the entire column, and therefore surface pressure, superior.

Surface pressure is intimately associated with surface weather and climate. Surface pressure governs the planetary winds. It follows that the planetary winds evolve according to change in the ozone content of the upper half of the atmospheric column. Yes, in the terms that we are fond of employing, the stratosphere is the troposphere. The stratosphere is where weather and climate is determined. As Gordon Dobson observed back in 1924, weather   evolves according to the ozone content of the air. But the significance of his observation  was lost on those who replaced him. His successors were not observers but ideologues. The account of climate science became a servant of people with a social agenda is told here.

Indeed, the relationship between geopotential height,  surface pressure and surface temperature is intimate. In 2002 Polanski  found that he could accurately reconstruct 500 hPa heights using just sea level pressure and surface air temperature data. He noted that the reconstruction  was more accurate in winter and in mid to high latitudes where variability in both surface temperature and pressure is greater. The reconstruction was less accurate in low latitudes and indeed wherever variability in surface temperature and pressure is low. You can see an account of Polanski’s research here:(http://research.jisao.washington.edu/wallace/polansky_thesis.pdf). This is an excellent instance of deduction from result back to cause. At this point, just remember that surface pressure, geopotential height and surface temperature are linked with surface temperature a product of pressure and geopotential height.

CLIMATE CHANGE

Now to the nitty-gritty of surface temperature variation….climate change:

The three maps below show:

  1. The spatial distribution of geopotential height anomalies in January 2015
  2. Anomalies in the temperature in the lower troposphere in January 2015
  3. Surface temperature anomalies in January 2015500hPa heightsLT Jan 2015

GISS Surface temperature January 2015Map Sources: http://data.giss.nasa.gov/gistemp/maps/    http://www1.ncdc.noaa.gov/pub/data/cmb/sotc/drought/2015/01/hgtanomaly-global-201501.gif, http://nsstc.uah.edu/climate/  http://nsstc.uah.edu/climate/

The first map shows geopotential height anomalies. The second map indicates that the lower troposphere is indeed anomalously warm where 500 hPa heights are anomalously elevated.  The third map indicates that the surface is anomalously warm where heights are anomalously elevated. Remember that high heights indicate a high pressure zone where the lower atmosphere is warm and relatively rarefied.This gives rise to a rule of thumb that accords with common sense and daily observation. The surface warms when atmospheric pressure increases, the air warms and cloud cover falls away. 

The question arises: What causes atmospheric pressure to increase in the mid latitudes. The short answer is a persistent shift in atmospheric mass from high latitudes, especially from the winter hemisphere where ozone proliferates reducing the density of the upper part of the atmospheric column and  so reducing surface atmospheric pressure. For those of you familiar with the notion of the ‘Annular Modes’ or its northern hemisphere manifestation, the ‘Arctic Oscillation’ or perhaps the North Atlantic Oscillation I am here describing the causation of all these phenomena. All involve a change in the relationship between surface pressure in the mid latitudes and that in high latitudes. These are recognised as the dominant modes of natural climate change on all time scales…..cause unknown!

A TOP DOWN MODE OF CAUSATION FOR SURFACE TEMPERATURE CHANGE

The figure below shows the evolution of temperature at the surface, 600 hPa, 300 hPa and 200 hPa over the Indian Ocean between Africa and Australia at latitude 30-40° south over the period 1976 through till December 1990. In order to facilitate comparison at very different temperatures the data is shown as anomalies with respect to the 1948-2015 average.

Air T in a column

Source for both graphs, above and below: http://www.esrl.noaa.gov/psd/cgi-bin/data/timeseries/timeseries1.pl

It is plain that the higher the elevation the more wildly does the temperature gyrate and not always in concert with the air at the surface.This is also apparent when we compare anomalies in temperature near the surface and at 600 hPa as seen below.Indian Ocean surface and 600hPa T

Plainly, the variation of the temperature at the surface does not explain the variations at 600 hPa. Temperature at 600 hPa is affected by the ozone content in the upper half of the atmospheric column. The ozone content of the stratosphere is determined in the upper atmosphere in interaction with the mesosphere (where the ozone content and the temperature of the air diminishes with increasing altitude) and the ionosphere where short wave solar radiation ionises the atmosphere making possible the formation of ozone and other compounds injurious to ozone).

Indeed, it is un-physical (an impossibility) that a small temperature increase at the surface could be responsible for a greater temperature increase aloft. The upper air is independently warmed by ozone that absorbs long wave radiation from the Earth. Warming and cooling of the air aloft is independent of change in the temperature of the air at the surface and the prime determinant of surface atmospheric pressure (our first rule of thumb) and surface temperature.

To reiterate: High pressure cells are characterised by down-draft.  Air can hold water vapour according to its temperature. Descending air is warming due to increasing compression. Descending air will not produce cloud. To the extent that the  atmospheric column has  cloud it will thin as the air warms.This is why our second rule of thumb works so well. To remind you here it is again: The surface warms when atmospheric pressure increases and cloud cover falls away. 

It follows that surface temperature in the mid latitudes,  a zone inhabited by high pressure cells, much subject to minute variations in surface pressure as atmosphere shifts to and from the poles , very much depends on the ozone content of the air aloft.

WARMING IN HIGH LATITUDES IN WINTER

The explanation given for the origin of warming in the mid latitudes via loss of cloud cover does not explain warming in the total darkness of the polar night that is pretty obvious in the third diagram above. Why is it so? The mode of causation follows from the minute increase of pressure in mid latitudes and a dramatic fall in high latitudes. It involves the replacement of  cold with warm air. Lower surface pressure in higher latitudes and higher in the mid latitudes involves a change in the origin of the air that always flows from high to low pressure. The solar energy that accrues in low latitudes is constantly being redistributed to higher latitudes via the movement of the air. Exaggerate the movement from the equator to the pole by changing the surface pressure relationship and the pole warms.

The variation in the ozone content of the air in high latitudes, occurring in winter time is the source of change in cloud cover in the mid latitudes. It is also the origin of changes in the winds according to change in the pressure gradient between the equator and the pole. All we need to do to change the average temperature of the surface of the Earth is re-distribute the warmer air.

THE TASK AHEAD

Dobson’s observation that surface weather varies with total column ozone is a vital clue that leads us to an explanation of the origins of the natural variation in climate. Accordingly we should look carefully at the influence of ozone on the temperature and density of the upper air. Specifically, we must ascertain the particular altitude at which the presence of trace amounts of ozone begins to affect the temperature of the air (and therefore cloud cover) and whether and to what extent that altitude varies with latitude? The answer will lead, in time, because nothing happens as quickly as we might like it to happen, to a revolution in our understanding of the Earth system upon which man depends for his sustenance.

If an increase in the ozone content of the upper air can cause the temperature of the air to increase at the surface of the planet on a month to month basis then we must examine the long term evolution of the ozone content of the air to explain surface temperature change on annual, decade and longer time scales. Equally, we can study the evolution of surface pressure over time that tells us where the wind is coming from. Or indeed, we can simply study the change that occurs in the speed of the wind because that is related to its ability to convey energy from warm to cool locations.These are the central concerns of this work.

Quantifying change due to natural causes is an essential pre-requisite  to the determination of whether in fact, as is widely believed, man is spoiling his nest via the emission of so called ‘greenhouse gases’.

It appears to me, via a close examination of the surface temperature record across the globe that there is no background level of temperature increase that is underpinning the temperature increase (and decrease) that varies so widely (and so naturally) according to hemisphere, latitude, location and season. That natural mode of change is what we need to explain.If we don’t, we will be at the mercy of of  those who want to attribute any and every change to the works of man in order to promote their own, in many instances, expensive and damaging agendas.

 

 

 

2 ASSESSING CLIMATE CHANGE IN YOUR OWN HABITAT

Immediately beneath this sentence is the interface of the ESRL Website at: http://www.esrl.noaa.gov/psd/cgi-bin/data/timeseries/timeseries1.pl

ESRL interface

The interrogation that is entered in the form relates to sea surface temperature at 20-40° south latitude around the entire globe (0-360° longitude) taking into account every month of the year adjusting for the reducing circumference of the Earth as latitude increases, presented as a plot. That plot is below.Graph SST

I live at 34° south latitude and at this latitude there is mostly ocean rather than land. Home is on the south-west coast of Australia where the winds are mostly onshore. So, air temperature tends to follow sea surface temperature. I am a farmer and all farmers take a strong interest in climate. I grow grape vines and make wine. The wine expresses the variations in the climate from year to year. To make good wine, the best wine possible, I need to know what is going on. I am told that the climate is getting hotter and I may need to plant later ripening varieties to avoid damaging heat during the ripening period.

All that we can say about this data is that temperature has increased in both winter and summer. But spring and autumn is important to me. The vine leafs out in spring and the fruit matures in autumn. I need to dig deeper.

The data can be acquired in the form of an array of monthly averages as seen below. Its a long sheet of data and I show you just the top and the bottom of the sheet.

SST data top

SST bottom

I want to show you how to work with the raw data to get a much better idea of what is going on in your habitat. Since climate varies primarily according to latitude I define my own habitat, in the first instance, as a band of latitude. If you prefer, you can focus on just part of a latitude band and perhaps air temperature rather than sea surface temperature if you happen to live far from the sea. In this exercise I am going to focus on the entire band of latitude because I am interested in the way climate changes globally.

Copy the data directly from the ERSL website and paste using a simple ‘notepad’ format. Save this as a text file. This is what the notepad sheet looks like.

SST notepad

Next step is to import that data into a spreadsheet via the import wizard available in excel.Text import wizard

Below, the spreadsheet is represented in part with some calculations in red text and a graph of the data in red.

Annual average SST 20-40° south

I have added each months data from January through to December and divided by 12 to yield the annual average. Then I have plotted the column in red. What can we see:

  1. There has been an increase of 0.4°C in temperature in this latitude band over the last 67 years. However, this is within the range of the most extreme inter-annual variability (more than 0.5°C) so it is possible that the factor causing the temperature to swing between the years is also responsible for the whole of period change.
  2. Extreme inter-annual variability prior to 1978 and much less after 1978.

The expansion of the Hadley cell and the consequent southward migration of the mid latitude high pressure cells after 1978 is a feature than many observers have remarked upon. High pressure cells dominate this band of latitude. Summers are dry. In winter fronts attached to low pressure cells that impinge at this time of the year bring rain. The lack of variability post 1978 suggests a reduced incidence of cold winds from the south.  High pressure cells are relatively cloud free. If there is less cloud it can’t come and go. With an expansion of the Hadley cell one would see fewer fronts associated with low pressure cells so the fluctuations in surface temperature would tend to diminish along with the rainfall. Indeed rainfall has declined by 15-25% depending on location.

AV Mth SST.JPG

By adding all Januaries and dividing by 68 (68 Januaries) the average temperature for the month of January over the period 1948-2014 is obtained. It is 22.32°C. Paste the formula across the page. Graph the result as the average monthly temperature.

Average daily temperature is sub optimal for photosynthesis (25°C is optimal) in all months but daytime temperature in the height of summer is almost warm enough to be optimal.  Growth of plants is very slow in the winter months. An extension of the warmth of February into the months of March through to June would increase plant productivity but unfortunately, without irrigation this can not happen. However, grape vines are hardy plants and this is their natural habitat and the best wines come from non irrigated vines. Less rain means less fungus and less spraying so it’s all good.

I want to see how sea surface temperature has evolved over the decades. The process is shown below. First copy and paste the average monthly temperature for the entire period to the head of the spreadsheet immediately adjacent and to the right of the raw data. Follow in the next row with a label for each month. In the next row calculate the difference between the raw data for a particular month and the average for that particular month for the entire period. For instance  raw data for January 1948 is a temperature of 21.957°C and the average for the entire period for the month of January is 22.32128, the difference being 0.36428°C. This statistic is the ‘anomaly’ with respect to the average for the entire period.

Anomaly 1948-56

I plot the anomaly for the period 1948-56 together with the average for that period of 9 years and you see it above. Its plain that this decade was cooler on average especially in April and May. I work through the decades.

When I get to the decade 1997-2006 I see this:

SST Anom 20-40S 1997-2006

The months that were very cool in the first decade are very warm in 1987-96. The months that were slightly anomalously cool in 1948-56 are still slightly anomalously cool.  This is interesting. If there is a greenhouse effect due to increasing carbon dioxide in the atmosphere why is there so small a temperature increase in spring and so large an increase in autumn over this sixty eight year period?

So, I plot the average for each decade and here it is:

Decadal change

It turns out that in the intervening decades, and in particular from 1957 until 1976 the first half of the year has been very much cooler than both the first and the last decade. There is very little change between the first and last decade. Much wider swings have occurred in the past. The decade 1977-86 was much warmer in spring and early summer than it is in the last decade. The decade 1997-2006 that saw some of the warmest years globally in terms of annual averages is the coolest within this particular band of latitude.

Obviously, there is a factor involved that can produce warming AND COOLING and climate change is not a one way train.

Obviously, annual averages are not the appropriate metric if we want to discover the sources of natural variation in climate. We need to focus on monthly data.

What is to come in this blog/book?

If you are genuinely interested in the question of whether man has an influence on the climate then read on.  If you want to know what the sources of natural climate variation are then read on. But if you would rather engage in a ‘willing suspension of disbelief’ as most of us do when we go to the movies or to church on Sunday, and you are ideologically committed to the notion that man is responsible for climate change and are not willing to consider any other possibility then this is not the place for you. In short order you will be confronted by things that will bother you and you will become uncomfortable.

If you can look at data and ask yourself ‘why is it so’ please come along for the ride.

 

 

1 HOW DO WE KNOW THINGS?

When we are  trying to understand how a machine or a process works we can approach via a study of each of its particular elements including its physical, chemical and metallurgical character, its motions, the sources of energy that drive the system and the lubricants that facilitate its smooth working.  That’s the long route.

By contrast just a moment or two of observation of the working machine can be revelatory.

In a flash we observe that the machine has two wheels; you sit on the seat, grasp the handlebars and provide energy with your legs going up and down. We witness its performance over time. It might be just a minute long, it might contain the going round in circles part, the climbing the hill part or the free-wheeling part and perhaps the falling off part. But just imagine how little we would learn if the only part we saw was the front wheel and the handlebars with the hands hanging on.

Until 1996 when a 48 year history of the atmosphere became available in the form of reanalysis data a portion of natural world was missing from the field of view. That portion was the mid to high latitudes of the southern hemisphere where the global circulation of the atmosphere is determined. Unfortunately, the United Nations International Panel on Climate Change had already made up its mind that man was the agent of change and disaster was at hand.

Via reanalysis, we can now see the entire structure of the atmosphere. It is apparent that the nature of the atmosphere changes over time. Today, in 2015 we have nearly sixty eight years of data. But it appears that we need at least two hundred years of data to see the workings of the atmosphere through its shortest cycle of change.

The Earth system can be known via the results that it produces even though the  sixty-eight year period of observation is short…comparable to that where the bike rider  settles into his seat, takes his feet off the ground and starts pedalling.

We don’t have to travel into the Antarctic stratospheric vortex and measure the concentration of NOx that erodes ozone to know what the Antarctic vortex is doing. We observe the perennial deficit in ozone in the southern hemisphere by comparison with the northern hemisphere and the long cycle of change in Antarctic surface pressure. Ozone partial pressure, the temperature of the stratosphere, the kinetic energy imparted to the atmosphere, surface pressure, wind velocity and the evolution of the planetary winds are inseparably linked. If the tongue of mesospheric air over the Antarctic shrinks away, less erosive NOx is drawn into the stratosphere and ozone partial pressure increases, the air warms driving a further fall in surface pressure in a circle of self reinforcement that has headed in the same direction for the last sixty-eight years, the entire period of modern observational record.

To all those earnest chemists who will maintain that the ‘ozone hole’ is due to the works of man I would say, stand back.  Appreciate that the ozone hole occurs at that time of the year when the ozone content of the southern stratosphere PEAKS outside the perimeter of the ozone deficient polar vortex that is loaded with mesospheric air. Yes, it PEAKS. Think about the circular motion of the atmosphere over the pole and what governs the presence of mesospheric NOx that erodes ozone. Appreciate the fact that, in winter, the entire atmospheric column from fifty to seventy degrees of latitude is rich in ozone throughout most of its depth. At this time the high latitude stratosphere takes on the role that the troposphere seems to perform in determining the movement of the air. The stratosphere becomes the ‘weather sphere’. Outside the tropics rules of thumb that enable us to differentiate between a ‘troposphere’ and ‘stratosphere’ no longer apply. In terms of convection, neither surface temperature nor the release of latent heat of condensation can explain convection in high latitudes. That role belongs to ozone. It is ubiquitous, unaffected by cold traps, has a ready supply of energy to drive warming both day and night and that energy is at the very peak of the spectrum of long wave energy emitted by the Earth at 9-10 µm, virtually unlimited in its supply. Hence the warmth of the stratosphere and the vigour of a polar cyclone.

Why is the stratosphere warm? Is it primarily because the ozone molecule absorbs at 9-10 µm serendipitously at the peak of Earth energy emission rather than photolysis by very short wave radiation from the sun that impinges in the main at the upper margins of the stratosphere above 1hPa? Is the warmth of the stratosphere that varies little between day and night, much less in fact than the variation at the surface, not the result of the constant emission of long wave radiation from the Earth itself, day and night and via the transfer of energy from low to high latitudes, across the seasons? How can we account for the fact that the mid latitude stratosphere is warmer in winter than it is in summer?

Gordon Dobson, who developed the use of a spectrophotometer almost a century ago, to measure total column ozone, discovered that ozone distribution mapped surface atmospheric pressure with 25% less ozone in the core of a high pressure system than at its perimeter. Zones of low surface pressure exhibit the highest total column ozone. Plainly there is more ozone in the upper air, and the stratosphere is warmer when surface pressure is low.  A cold core polar cyclone is a warm core polar cyclone aloft.  Is it not the warming aloft that drives uplift?  Indeed, warming in the stratosphere is linked to the creation of polar cyclones. Palpably ozone drives surface pressure and the high latitude jet stream. Ozone variation is therefore linked to the annular modes of inter-annual climate variation and its northern hemisphere manifestation, the Arctic Oscillation. Why, where and how do variations in ozone occur and at what time? Dobson established the fact that there is a direct relationship between ozone and weather phenomena. That was a vital clue as to the origin of climate change. That all important ‘clue’ just slipped through the cracks. It was replaced with a particular notion that, while it has no relation to what we actually observe, is a better fit to the ideology of the age. We choose to believe what we desire to believe.

We establish the presence of a high pressure cell of descending air by measuring atmospheric pressure at the surface. There is a zone of high pressure centred on latitude 30° in both hemispheres. But where is the head of a high pressure cell located? Is its head in the stratosphere, and at what level?  How does that play out in determining the quotient of cloud that shelters the Earth from the rays of the sun? If ozone came and went on a 200 year time scale what would that mean? Would we not need 200 years of observation to properly describe the climate of any particular place?

The temperature of the surface of the Earth will vary if there is change in either the input side or the output side. Changes on the input side can account for both warming and cooling. In the 1960s the northern hemisphere cooled and Antarctic summers have been getting cooler for the last fifty years. Logic and observation are important.

At particular places the direction of the wind changes coming from a warmer or a cooler place, it contains more or less moisture and there is more or less cloud to shield us from the burning rays of the sun. Surface temperature is intimately tied to the global circulation of the air and the distribution of cloud. This in turn is governed by shifts in atmospheric mass to and from Antarctica. Ozone is inextricably linked to surface pressure phenomena and shifts in atmospheric mass from high latitudes.

So far as the ‘greenhouse effect’ is concerned, is this mental construct compatible with cooling? The temperature of the surface across the entire globe varies strongly in winter tied to polar atmospheric processes that are inseparably linked to the arrival of the polar night and the intensification of the stratospheric circulation in winter. Is the greenhouse effect compatible with warming that occurs only in winter, only in one hemisphere? Is it compatible with a hiatus in warming. Is it consistent with the cooling of the entire system that is evident in the last decade? At a very basic level, we need to answer this very simple question: Can air that is free to move constitute an effective insulator? Or is it better described as a medium for energy transfer from one place to the other just like the ocean, except that in the case of the atmosphere the ‘other place’ is in the vertical dimension……’space’ where that energy is dissipated, never to return.

Science could be described as the practice of critical examination of the validity of the interpretations drawn from data. The problem with ‘climate science’ as it manifests in the works of the United Nations International Panel on Climate Change (I.P.C.C) is that it fails to offer a plausible explanation for the patterns of warming and cooling that we observe. In the 1960s and early 70s, the Earth warmed in the southern hemisphere while cooling in the northern hemisphere. Of what use is a brand of climate science that cannot explain the patterns of variation  that we actually observe?

Here is the ultimate kicker: The basis of the alarm concerning the way the globe has warmed over the period of record needs to be critically assessed at the most elementary level. Is the warming that has undoubtedly occurred beneficial or harmful? Looked at dispassionately, the tropics is the only location where the Earth is sufficiently warm in all seasons to enable photosynthesis to achieve peak rates of carbon assimilation. The remainder of the globe experiences temperatures that are sub optimal for photosynthesis for part of, or the entire year. Plants use carbon dioxide in the air to create complex carbohydrates that are the basis of the food chain upon which all species depend. Carbon dioxide at 400 ppm., from a plants point of view, is at a concentration that is very close to starvation levels. When CO2 concentration is enhanced, plants require less water and the entire planet greens. This improves the environment, a thoroughly desirable end. From the point of view of mankind, sitting at the head of the food chain, from the point of view of man as farmer, the Earth is cooler than is desirable.

What I offer in the chapters to come is a novel explanation of the real world of climate change. That explanation is grounded in the reality of temperature change as it is observed. If you are keen to see the book of about 30 chapters that I have written on this subject over the last year simply subscribe to this blog to receive it in serial form.

I want to make a difference. The sooner the better. Don Quixote is riding again and this time he is not tilting at windmills but building them at our expense. One would not mind perhaps if he did not have his hand in our pocket.

I need help to make a difference. If you could pass on the address of this blog to your friends that will materially help.

If there is anything that is unclear, obscure, badly expressed, poor grammar, lousy spelling or needs further explanation or you want to challenge my conclusions I want to hear about that too. Please email me erlathapps.com.au