This post addresses questions of interest namely:

  1. To what extent is the temperature of the surface of the sea simply a reflection of a variable rate of mixing of the volumes of cold water from high latitudes and the deep ocean into the warmer waters of low and mid latitudes?
  2. To what extent is the variation in surface temperature due to a change in cloud cover?
  3. To what extent is the variation in surface temperature due to a ‘greenhouse effect’ as the carbon dioxide content of the atmosphere increases?

At the outset we can dismiss the notion that a greenhouse effect drives surface temperature.  The Southern Hemisphere has not warmed in December for seven decades.  In logic (science) one instance of failure is  sufficient to reject a hypothesis. If one persists with a failed hypothesis one is engaged in a religious observance rather than science.

Figures 1 a,b,c and d are tendered in support of this observation


Hemisphere surface temp



Figure 1 a, b, c and d. data source Kalnay et al reanalysis here. The arrow in 1d is horizontal.

It is plain from the data in figure 1 c that temperature evolves differently according to the month of the year, that it increases and decreases and the rate of change is highly variable.

If we are to understand climate change, it is the highly variable evolution of surface temperature from month to month that we need to explain.


To investigate the mixing of cold with warm water and temperature change due to cloud effects, it is useful to look at raw data that describes the surface temperature of the ocean at a moment in time.

The Earth can be divided into discrete zones according to latitude and longitude. Figure 2 represents one of these zones at 30-40° north latitude. Plainly, there are zones in the North Pacific Ocean where temperature has declined over the last seventy years.

Figure 2

For this analysis the globe can be divided into twelve zones according to longitude in each of four latitude bands namely 30-40° south, 0-30° south, 0-30° north and 30-40° north. In zones dominated by land data is not reported. The upshot is that there are twenty nine zones with large bodies of water to consider.

Figure 3 shows sea surface temperature on the 17th of September 2016.  Superimposed are numbers indicating whole of period change for both January and July, the two months that are known to exhibit the greatest variability. Note that it is the change in the Excel calculated trend line that is reported here rather than simply the difference in the temperature between the first and last month.

Figure 3

For clarity the data is presented again in table 1.


Table 1

If we consider increases of 0.9° C and more as notably extreme, it is in the southern hemisphere in the 0-30° latitude band and the 30-40° south latitude bands that  extreme warming  is observed. Look for the numbers in white on the map and the cells in yellow  in in table 1..  Change smaller than 0.2°C is marked in green and enclosed with a border.

Generalising we can say that temperature advance is more a southern than a northern hemisphere phenomenon. Between the equator and 30° south the increase in January is notable. At 30-40° south the increase in June is notable. The Pacific is both peaceful and more stable in its temperature than the Indian and Atlantic Oceans. Some areas of the Pacific are cooler today than they were seventy years ago.

Why does temperature change exhibit such diversity?


The lowest surface atmospheric pressure  occurs in the Antarctic circumpolar trough that is located over the Southern Ocean on the margins of the Antarctic continent. There is no counterpart to this extreme trough in surface pressure in the northern hemisphere where moderately low surface pressure is found over the continents in summer and the sea in winter. Accordingly, across the entire globe, including the tropics, air moves towards the south east, spiralling towards the Antarctic circumpolar trough. Locally, counter currents exist with the movement of the air in other directions but this north- west to south- east flow is the dominant pattern. Part of the counter flow is moist air that moves from the equator into mid and high latitudes, especially in the northern hemisphere, bringing moisture and warmth to cold locations far from the equator. This is a counter flow to the trade winds and without this flow high latitudes would be both colder and drier. Counter flows are in part monsoonal in nature but they also derive from the fact that on a local scale, air circulates about cells of low and high surface pressure.

The strongest winds on the planet are the westerlies of the southern hemisphere. These are also the most variable winds due to the ever changing relationship between surface atmospheric pressure in the mid latitudes and the Antarctic circumpolar trough. This westerly flow has become progressively more extreme over the last seventy years. Oscillations in the flow are consistent with change in the ‘Antarctic Oscillation index’. This change, that is globally influential, is driven by the changing intensity of cyclonic activity in the Antarctic circumpolar trough.

With the notable exception of the Indian Ocean, currents circulate in a clockwise direction in the Northern Hemisphere and anticlockwise in the Southern Hemisphere. Currents are forced by the planetary winds. Since the strongest of these winds are the westerlies of the Southern Ocean, this is where the movement of the ocean is most vigorous. The West Wind Drift of the southern ocean is interrupted by the near conjunction of the South American land mass and the Antarctic Peninsula. A certain amount of up-welling occurs in coastal waters promoting strong fisheries on the Eastern margins of the Oceans, particularly off the coast of Chile. A failure in this up-welling involves a collapse in the fishery. The intensity of up-welling changes the pattern of surface temperature and as we see in table 1 the effect is very much greater in the Pacific.

Notable is the northward extension of warm waters to provide a more equable climate to the western margins of the ocean basins in the northern hemisphere. Because these flows  are anomalously warm as they reach the eastern margins of the ocean basins, so the western margins of both North America and Europe are warmer than they would be in the absence of these warm waters. The Gulf Stream is an instance but the Eastern Pacific is equally an example. There is no comparable situation in the southern hemisphere because the northward flow of cold Antarctic waters on the western margins of the southern continents is deterministic.

Limiting this tendency to equable temperatures on the eastern margins of the major oceans, cold water from high latitudes is driven towards the tropics. This is particularly the case in the Pacific (the largest basin) and more particularly in the southern hemisphere. Anomalously cold water is therefore found in the region of the Galapagos Islands and also from Cape Town to Sierra Leonie. Cold water coursing along the coast towards the equator tends to promote precipitation over the ocean rather than the land,and the desertification of adjacent land.

In complete contrast, the Western coast of Western Australia is warmed by a southerly flowing current.  The Indian Ocean is atypical in that it circulates weakly in an anticlockwise direction with anomalously cool water moving northwards along the East coast of Africa penetrating to the Persian Gulf and the coast of India. Perhaps it is the strength of the monsoonal influence in this part of the world that dictates this contrary circulation.  Accordingly the relative backwater that is the Indian Ocean has produced the steepest increase in sea surface temperature over the last seven decades. There is an increase of 1.3°C between Africa and Australia in the 0-30° latitude band in the month of January.  The Atlantic south of the equator, also exhibits a temperature increase of about 1°C with an increase of 1.3°C on the west coast of the African continent, again in the southern hemisphere.

The pattern of warming and cooling is of interest because it comes about via the joint influence of the change in cloud cover, change in the rate of admixing of cold waters from high latitudes and the up-welling of cold water from the ocean deep. Plainly the rate of temperature increase in the Pacific has been  moderated and even reversed by comparison with the Indian and Atlantic Oceans.

As already noted, the increase in the temperature of waters south of the equator is greater than the increase in the temperature of the waters of the northern hemisphere in comparable latitudes. This increase has occurred despite the obvious cooling influence due to the West Wind Drift that is so apparent in the Pacific. This exaggerated surface temperature increase is consistent with the marked increase in surface pressure, geopotential height and upper air temperature in the low and mid latitudes of the southern hemisphere. A southward expansion of the zone of high surface pressure in the mid latitudes of the southern hemisphere can be described as an expansion of the Hadley Cell. So the heavy temperature increase in these latitudes is unequivocally due to a decline in cloud cover.

But there are large areas across the Pacific and Atlantic Oceans that have experienced smaller increases in temperature and others zones where a decline in temperature has occurred due to the admixture of cold water with the intensification of the planetary winds that has occurred over time. In June there is significant cooling at 30-40° north probably due to enhanced interaction with the Arctic Ocean. The corollary is a decline in ice coverage in the Arctic. This cooling follows from the acceleration of the westerly winds in high latitudes, and especially so in the southern hemisphere.


The relationship between surface pressure and sea surface temperature is documented in figure 4.

SST and Surface pressure 1
Figure 4

The root cause of the increase in surface pressure in the low and mid latitudes of the southern hemisphere is the decline in surface pressure in the region of the circumpolar trough that surrounds Antarctica. This is in turn related to the increase in the ozone content and the temperature of the stratosphere. As Gordon Dobson observed in the 1920s, following on from the work of  the pioneering French meteorologist deBort in the last decade of the 19th century, surface pressure is a reflection of the ozone content of the upper portion of the atmospheric column. As surface pressure falls away the tropopause is found at ever lower elevations. Differences in air density between air masses rich and poor in their ozone content gives rise to jet streams that manifest as polar cyclones at the surface.  As the vorticity of polar cyclones within the Antarctic circumpolar trough varies, so surface pressure changes across the rest of the globe via mass exchange. A fall in pressure in the Antarctic trough signals a shift in atmospheric mass to latitudes north of about 50° south. It is this shift in mass that is associated with the rising air temperature and diminishing cloud cover in the low and mid latitudes of both hemispheres.  Declining cloud cover is associated with rising air temperatures in the cloud zone reflected in increasing geopotential height at 500 hPa. This particular association is frequently the subject of comment in meteorological circles. Ozone is ubiquitous; ozone gathers infrared energy from the Earth itself and heats the air, its efficiency in this respect increasing with surface pressure. It provides more energy to the troposphere than it does to the stratosphere. In this way the extent of cloud cover depends upon the changing flux of ozone in the air.

To understand the evolution of climate we must discard propositions that are devoid of value and re-learn that which was pioneered more than a century ago.


Of major importance to the evolution of surface temperature are ocean currents that depend upon the planetary winds for their motion.

The origin, temperature and humidity of moving air changes according to the flux in the ozone content of the air in centres of low surface pressure. Change is initiated in the stratosphere in high latitudes chiefly in winter. This is ultimately what drives climate change at the surface with a very different pattern of temperature change according to the month of the year. Man is a minnow of little consequence in the grand scheme of things.

In general the pattern of evolution in surface temperature in the near coastal areas of those parts of the Earth favourable to human settlement is dictated by the interception and storage of solar energy by the oceans as mediated by cloud cover.  Temperature change at particular locations is mediated by the movement in the waters of the oceans that represent most of the surface of the planet. The oceans are the chief organ for energy storage by virtue of transparency to solar radiation.  Energy storage occurs below the surface. Our ability to monitor the temperature of the ocean below the surface is limited. Until we can assess temperatures below the surface there is no valid way to monitor the energy relationships that determine the evolution of temperature above the surface. One should not put too much reliance on surface temperature as an indication of the state of the system over intervals shorter than a decade.

The anthropogenic argument is not a product of observation or deduction but a form of hysteria. Its origin is in the dis-tempered gut of modern man, reeling from the pace of change and the pressures of urban living. Perhaps it is due to a feeling of helplessness in a world in which there is more regulation, more complexity, greater inter-dependence and perhaps a feeling of chronic uncertainty due to the fact that ever increasing numbers enjoy less of the fruits of their toil, governments are piling up debt and seem to be out of touch with the needs of the common man.

In a planet that is too cool for both comfort and productivity man should not worry when the surface warms slightly, a frequent and highly beneficial circumstance in the evolution of the Earth. When we start shedding clothes in winter because we need to cool down, that will be the time to worry.

Worry induces a search for remedies and mankind becomes susceptible to the wiles of multitudes of carpetbagging rent seekers, keen to exploit the situation. That, unfortunately is the situation.  Too many carpetbaggers have staked a claim on the general revenue. Central banks fund ever increasing deficits creating spending power where none is earned. This is irresponsibility on a grand scale. The economic system appears to be lurching towards a catastrophic collapse.





Matthew Flinders named Cape Leeuwin after the first known ship to have visited the area, the Leeuwin (“Lioness”), a Dutch vessel that charted some of the coastline in 1622. There are three Capes in the southern hemisphere that offer a landfall to sailors who take advantage of the westerly winds at this latitude.

Cape Leeuwin is surrounded by blue/green water. Its a long stretch from Cape Town to the south west corner of Australia and an even longer stretch to Cape Horn. There is very little land between 30° south and 70° south latitude. The wind blows vigorously from the west. When you gaze out to sea and and find yourself reaching for more clothing it is because the air is very fresh, it has the same temperature as a vast stretch of ocean.

This Ocean  is the Earths battery. It is the chief and only means of storing energy from the sun. Whatever energy gets through the cloud layer penetrates deeply into the water and is given up slowly. The ocean warms and cools in the same way that it develops a long swell on its surface. When riding across the swell you rise up slowly and fall down just as slowly regardless of the surface chop. If we are looking for ocean, the location of the Earths energy store, you find it here. It is for this reason that Cape Leeuwin lighthouse is a good proxy for what is happening to the globe as a whole.

If a steady 33 mph (30 knots) wind blows for 24 hours over a fetch of 340 miles there is a 5% chance of encountering a single wave higher than 35 ft (11 m) among every 200 waves that pass in about 30 minutes. At the latitude of Cape Leeuwin a 50 knot wind is frequently encountered. No trees can grow in the vicinity of the lighthouse, just grass and low scrub. There is a layer of salt on everything.

If one looks for consistent high variability in the temperature of the surface of the sea it is here, in the southern hemisphere that one finds it, and at the equator. Here the variability is due to change in cloud cover and the direction of the wind. At the equator there is little cloud, little wind but a big variation in the in-feed of cold water from high latitudes according to the speed of the ocean circulation that is driven by wind and wave in high southern latitudes. It is in high southern latitudes that one finds the strongest wind belts on the planet, the roaring Forties, the Furious Fifties and the Screaming sixties.


Lighthouse and houses

The lighthouse at Cape Leeuwin dates from 1910 and so does the temperature record. A sample from 1915 to 1921 is presented below. There is a tiny diurnal and annual range  but strong cycles of warming and cooling. The daily range increases strongly in summer when hot winds from the continent tend to arrive on a ten day cycle associated with the passage of anticyclones. In winter, these winds off the land can be cold suppressing the maximum and reducing the diurnal range. There is considerable variability in the daily minimums in winter within and between years. Winter is the time of the year when the Antarctic dynamic associated with the ozone content of the polar atmosphere causes marked swings in the relationship between surface pressure in the mid latitudes and the Antarctic circumpolar trough affecting the rate of flow of the westerlies and at times bringing cold southerly wind from Antarctica. Frontal rainfall falls in winter. Summers are arid as cyclones  track well south. Autumn is a season of quiet air, and infrequent light showers when farmers clear up land for pasture and burn the native vegetation to reduce the risk of fire. With solid winter rainfall and deep soils the countryside supports the growth of large eucalyptus trees that drop leaves and twigs in summer, a worrying fire hazard but an essential store of nutrient for soil microflora and plants, tending to keep the soil cool and moist in the dry summers experienced on the western sides of the continents at this latitude. Not far away is a very large desert.

Fig 1

The red ellipses in figure 1 are intended to take your eye to features of interest, in particular the shape of the variability in the curve when temperature is least and the extreme variability in the daily maximum in the height of summer.

Plainly, the climate is like the road that curls through the Karri forest as seen below.


There is a conclusion that can be drawn from the data presented below: Between 1910 and 1992 the minimum daily temperature does not change. Between 1992 and 2015 it warmed slightly then cooled again, then warmed for about six years and cooled for another six and looks as if it will get back to the 1910 average of about 14.3°C in a few years time.

Straight up this tells us that either, there is no greenhouse effect due to carbon dioxide in the atmosphere or that some local influence is maintaining the status quo as the rest of the globe is warming. I believe that there is no greenhouse effect. I do know that there is a local factor enabling this place to retain the status quo as surface temperature increases elsewhere. Until we understand the latter influences we will not be free of fear of the former.

Carbon dioxide is plant food and it is greening the Earth and in particular the arid zones because a plant that is not starving for carbon dioxide does not have to open its breathing apparatus (stomata) as wide as an opera singer and it loses less moisture to evaporation in the process of acquiring its plant food. For godssake, plants are at the base of the food chain. We have the wherewithal to feed double the current population of the globe and yet global economies are in complete disarray, interest rates are negative, governments are printing money, nobody wants to invest,  commodity markets are reeling and the whole system is teetering on the edge of an abyss.  Something is very wrong in the way that we are ordering society. That something has a lot to do with climate scares.

In any case 14°C is too cool to support plant life properly. Photosynthesis is optimal at 25°C. The globe is too cold for comfort, too cold to support photosynthesis over the bulk of its area for too long in the annual cycle.

If the ‘climate sceptics’ could all read from the same hymn book there would be a much better chance of dismissing ‘climate change hysteria’ that is resulting in gross manipulation of energy markets and making it impossible for poor people in cold climates to keep warm in winter while denying many countries who are yet to industrialise the cheap energy that is required to fuel machines. That we have ‘luke warmers’ who consider that man is having some effect on the climate but can’t work out just ‘how much’ influence he is having plays into the hands of the so called ‘consensus’ claimed by the alarmists. This is like reaching down with a machete and cutting your legs off just below the knees. There is no need. Luke warmers…… forget about the theory and OBSERVE.


Min 1910-39

Max 1910-39
Fig 2 1910-1930, Daily maximum and Minimum temperatures. Solid line shows trend. Dotted line is a true horizontal.

Above we see that the annual range varies a lot. This is because in the height of summer the ozone content of the air is much affected by what is happening in the Arctic stratosphere. Less ozone means cooler temperature aloft and more cloud. In the depth of winter the ozone content of the air and hence its temperature, cloud cover and the entire global circulation is driven predominantly from Antarctica. If ozone partial pressure falls temperatures at all levels in the atmosphere respond, first in the stratosphere and next in the overlapping region where ozone exists in the upper troposphere and finally at the surface.

Gordon Dobson  put the matter in perspective when he calculated that if the entire atmosphere had the same density that it exhibits at the surface it would have a sharp top at 8 kilometres in elevation. I would remind you that  you can walk 8 km in an hour and if you are a walker in the Olympics you could be there in half an hour.


Max 1940-1975

MIn 40-75
Fig. 3 1940-1975  Dotted line is the horizontal

There are two possible reasons why the daily maximum could rise while the daily minimums fall.

  1. Cloud cover could fall away in summer as surface pressure rises in the mid latitudes (along with upper air temperature and geopotential height) while the winds that drive the circumpolar current accelerate due to the enhanced difference in the surface pressure between the mid latitudes and the poles. This would bring colder water from the poles to the western coasts of the southern continents reducing the winter minimum temperature and in fact the summer minimum because when the sun is not shining it matters little whether there is cloud or not.
  2. If the wind blows more consistently from the continent in summer that wind will be hot. That could occur if the core of anticyclones tracked further south. When surface pressure rises in the mid latitudes that is what happens. It has been observed that the so called Hadley cell that takes in the convection in the tropics and the descending air in the mid latitudes  has expanded in recent times. Notice the large fluctuation in the maximum temperature at Cape Leeuwin in summer. Notice that the pattern of extremes is quite different from year to year. This is what determines the level of success I have ias a wine maker in making wine from the early ripening Pinot Noir, a grape that is negatively affected by heat in the last month of ripening. Our ‘Three Hills’ vineyard is just 12 km north of the the lighthouse.On a hot day in February the temperature can climb to 42°C and the relative humidity drops from 60% to 30%. In just one day of this sort of treatment the grapes shrivel and sugar concentration rockets. Fortunately even if February is warm, most of the reds ripen in March and are picked in April. The chance of hot days is less in March, unheard of in April.

Group 1940-75

Above, we give a closer inspection of the temperature profile in the summer of 1958-59. It would not be possible to ripen grapes in such a year. Notice the low variability in the daily data in summer and the relatively high variability in spring. Quite atypical. The diminished area under the summer season temperature curve represents a reduced capacity for plant work.

Global data for the latitude band 30-40° south latitude is not  necessarily representative  of local conditions at Cape Leeuwin but neither of the summers of 1956-7 or 59-60 look particularly auspicious when we  examine the  geopotential height data for these years. Heights are likely to vary less with latitude than is sea surface temperature.  Sea surface temperature depends on the circulation of the ocean that exhibits a south to north and north to south component  whereas the movement of the atmosphere has a gently north east to south east movement that comes pretty close to following lines of latitude.



Max 1975-92

Min 75-92

In this graph we have fewer years and the pattern of heightened variability in mid-summer and mid-winter is  more apparent to the eye. Year to year variability comes from the same source as long term variability, the winter pole with peak variability in January-February emanating from the Arctic and July-August from the Antarctic. This is what is behind the variation in the seasons that keeps the farmers guessing.Its also what lies behind the long term variability, decadal and longer.



Max 92-15


Min 75-92

Again the dotted line is the horizontal. Its easy to see that the minimum has increased at about half the rate of the maximum. There is nothing in the Earth system that takes away carbon dioxide overnight and puts it back in the daytime.


Magnification drives home the point that variability in temperature is strongest in mid winter and mid summer. Extreme summer variability is due the fact that Cape Leeuwin occasionally experiences hot winds from the East in summer but it is also due to a flux in the ozone content of the air above and with it, cloud cover. Autumn is a time of low variability, balmy pleasant weather with light winds. The coldest months of winter are not always cold and nothing in the shape of the curves  in the bridging seasons provides any sort of an indication of what will happen in June, July, August and September. That depends on whats happening at the Antarctic circumpolar front.

Max 92-15.JPG  second

min 92-15.JPG second

Above is a different way of looking at the same data for the last 23 years. The trend curves are polynomials and they fit better the pattern exhibited by the extremes. The cooling trend of the last five years is given the weight it deserves. So far as the minimum is concerned we will soon be back at where we started in 1910.


In the figure below we have data for the entire globe in the 30-40° south latitude band drawn from here.

30-40S glabally Feb and July
Fig 5.  Sea Surface Temperature 30-40° south. Average monthly data.

Average monthly data conceals the interesting complexities that are only revealed in daily maximums and minimums. Is the temperature increasing during the day or at night? We are at a loss to explain anything and we are at the mercy of witch doctors who rush in to provide us with a global average.

At Cape Leeuwin the  daily maximum is the chief driver of variations in the average temperature.  Without a shadow of a doubt part of that daytime summer warming is associated with loss of cloud as the increase in geopotential height and air temperature aloft suggests. Part will be due to a more easterly component in the air in the summer that brings warm air from the warming continent during the day. In any case, its readily apparent that the direction of the wind can be critical to surface temperature in coastal locations. That applies, not only in coastal locations, but everywhere, when the wind comes more consistently from either the equator or the pole. Change the wind and you change the local temperature. For this reason we need to get a grip on what changes the global circulation if we wish to understand surface temperature change. Just quietly, we also need to get a grip on the degree of mixing of cold deep water with warm surface water due to the currents and the waves. We are measuring the temperature of our patient not in his anus or his mouth or ear-hole but at the extremities.

Some of the change in temperature at Cape Leeuwin may well be due to a change in the amount of cold water from the Southern Ocean being driven up the coast due to an increase in the speed of the southern ocean circulation. In that case, the enhanced current will tend to limit the increase in the temperature of the air as measured at Cape Leeuwin. The enhanced pressure differential between the mid and high latitudes has undoubtedly enhanced the circumpolar circulation and assisted to stabilise the temperature at Cape Leeuwin, a built in countervailing force limiting the rate of temperature increase due to loss of cloud cover and a generally enhanced flow of warm air from the tropics as the Antarctic circumpolar trough in surface pressure has deepened.



When one looks at climate change by latitude there is diversity in the warming/cooling according to the time of year. The interest in this chapter is to ascertain if there is a generalised warming that is like a groundswell, underpinning the whole. That is what would be expected under the greenhouse scenario.

Surface air temperature data for the globe as a whole is available via reanalysis. We need data for the populated and the underpopulated parts of the globe and for all the parts where no man lives.It can be found here: http://www.esrl.noaa.gov/psd/cgi-bin/data/timeseries/timeseries1.pl

From chapter 8 we  are aware that inter-annual temperature variability is strongest in January and February between the Arctic and 30° south. South of that latitude temperature variability is strongest in July and August. That pulse is regular as a heartbeat and it moves surface temperature in both directions, both warming and cooling. The most extreme inter-annual variation exceeds the degree of change over the period of record.  It  plainly reflects non anthropogenic factors at work because the anthropogenic effect by its nature can only increase temperature, never reduce it.

In this chapter we look at temperature change by the decade. We have almost seven decades of data in the reanalysis record. Below is a summary  of change between the first (1948-56) and the last period (2007-15).

60-90°North: An increase in surface air temperature in December (2.72°C) that is six times the increase in June.

30-60°North:  An increase in November (0.75°C) that is more than six times the increase in February.

0-30°North:  An increase in October (0.84) that is 2.4 times the increase in January.

0-30°South: An increase in April (0.84°C) that is 1.6 times the increase in August.

30-60° South: An increase in April (0.8°C) that is 2.5 times the increase in December.

60-90° South: An increase in August of 3.4°C and a decline of 1.9°C in December.

Below is the data by latitude. All diagrams are drawn with a scale of 5°C on the left axis to make them comparable. There are two diagrams for each latitude band. The lower diagram shows the difference between the first and the last periods for each month of the year. Note that the first decade is not always the coolest decade. Note also that the first and last periods include nine years while the intervening periods are of 10 years duration.










Confounding all expectations we have  cooling in summer in the Antarctic. The Antarctic is characterized by temperatures below zero all year round. It contains the vast bulk of  the Earth’s frozen water. Plainly that ice is in no danger of melting.


There are some people who attribute the entire gamut of temperature variation at the surface of the Earth to the enhancement by man of the supposed ‘Greenhouse Effect’. But we know that temperature varies with the season of the year and for any season from one year to another. The enhanced greenhouse effect can not account for cooler seasons or cooler decades.The enhanced greenhouse effect causes warming, not cooling.

It is increasingly acknowledged that the calculated temperature of the globe has not advanced since 1998, a feature variously described as ‘The Pause’ or ‘The Hiatus’. This is attributed to ‘natural cycles of unknown origin’ that are temporarily hiding the anthropogenic effect that is expected to come roaring back with a vengeance.

If we assume that the atmosphere imposes an actual ‘greenhouse effect’ via back radiation, and that it is somehow responsible for the elevation of the temperature of the surface of the Earth to some degree above that due to the direct warming via solar radiation, then how much of the increase in temperature can we attribute to the anthropogenic enhancement of this supposed natural greenhouse effect?  Is there a background level of  warming in every month of the year?

Greenhouse gases of anthropogenic origin are well mixed and should promote a generalized warming at all latitudes in every month of the year.

By latitude we have the strongest warming :

60-90°north. In winter

30-60°north: In spring and autumn.

0-30°north: In summer and autumn.

0-30° south: In autumn.

30-60°south:  In winter.

60-90° south: In winter

If the greenhouse effect relies upon amplification via an increase in atmospheric water vapour at a particular time of the year it might be argued that the heating effect should appear at that time of the year when atmospheric moisture levels are most enhanced.  We know that atmospheric humidity and global cloud cover peaks in January. The Earth as a whole is coolest in January. It is very doubtful therefore that an increase in atmospheric moisture  could cause surface warming because its prime effect is to enhance cloud cover.

If the anthropogenic greenhouse effect is to promote warming then the back radiation effect would have to be more powerful than the ‘enhanced cloud cover effect’. Clouds can curtail solar radiation by as much as 90%. The clincher is that the Earth is at its coolest when atmospheric humidity (and cloud cover) peaks.

In low and mid latitudes we see warming in spring, autumn and summer but the change is tiny by comparison with high latitudes.

High latitudes have uniformly dry air and water vapour is not available as an amplifier at any time of the year. And yet this is where we see the greatest warming. And this warming is in winter when both incoming solar radiation and outgoing long wave radiation are at a minimum. It is an anachronism that the poles have warmed in winter rather than in summer.This points strongly to another warming mode that is capable of warming the air in the absence of solar radiation. The temperature at the surface is a function of surface pressure that determines whether it is warm air from the mid latitudes that makes its way into high latitudes or not.  That’s a matter of simple atmospheric dynamics, which way the air is moving and where its coming from. That depends on the ozone content in the upper portion of the atmospheric column.

The warming of the poles in winter, the cooling in the Arctic in the middle decades, the marked cooling in Antarctic summer and ‘The Hiatus’ all separately and together indicate that some other mode of climate variation is very much more influential than the anthropogenic mode.

Unless we know what that ‘other mode of climate variation’ is and can account for it properly, we make an error in logic if we suggest that an average temperature for the globe as a whole is a statistic of interest or that change in that average should be a matter of concern.

Today’s climate scientists do not know what is behind the changes in temperature that are most obvious…the supposed natural climate variation.

If perchance there is someone out there  who thinks differently can I ask them what they think the anthropogenic contribution has been?

Other questions spring to mind:

  1. Is the anthropogenic contribution just that part (or perhaps the whole) of the temperature increase in the month where the temperature increase  has been least?
  2. Any ideas as to why surface temperature declined in Antarctica between November and February?
  3. Any reason for the three decade  collapse in surface temperature in summer in the 30-60°north latitude band after 1948-56?
  4. Any ideas as to why we have this hiatus in the advance of the average global temperature since 1998?
  5. If the Arctic began to cool in winter and drove down the global temperature statistic at a time when habitable latitudes began to warm strongly would the global temperature statistic be an appropriate metric to assess the suitability of surface temperature to the needs of future generations of humanity?

When quite plainly there are powerful non anthropogenic forces that drive change  differently according to latitude and time of year, should we have any interest at all in  calculating a global temperature statistic?

Given that parts of the globe are  undesirably and dangerously cold and warming is desirable, why not exclude these parts from the metric employed to indicate undesirable warming?

Could it be that the entire temperature record might be explained in terms of a natural cycle involving changes in ozone, shifts of atmospheric mass between high and other latitudes and the associated change in cloud cover?


Ninety nine percent of the atmosphere lies within the ambit of a vigorous day’s walk, just 30 kilometres!

The atmosphere efficiently conveys heat to space via convection (transport) and radiation.  This is apparent in the 24 hour cycle of temperature as a point on the Earth’s surface alternately faces the sun and enters the night zone and the more so in inland locations where the daily range of temperature is accordingly much greater.We call this increase in the daily range of temperature the ‘continental’ effect.

In the northern hemisphere where there is a relative abundance of land the seasonal extremes are wider we have another example of the ‘continental effect’. The strong maximum in outgoing radiation in summer should promote summer warming if the atmosphere were subject to a ‘greenhouse effect’. But, consult the graph below and see that in the mid latitudes of the northern hemisphere we find that the temperature has increased mainly in spring and autumn. In high latitudes the increase in temperature has been in winter when outgoing radiation plunges to a  minimum.

Change in T in NH according to month of the year

Under an imaginary greenhouse regime the atmosphere becomes an impediment to heat transfer and we should see an increase in temperature in all seasons and in all locations just as the ocean limits the variation in temperature of proximate locations. But in fact we observe that the temperature increase that has occurred is variable according to the month of the year. This temperature increase does not tally with the mechanism that is proposed by the United Nations International Panel on Climate Change that was set up to examines man’s influence on the climate of the globe.

In cold conditions humans make sure that the air close to their skin is contained and unable to move. But, the Earth’s atmosphere is not confined in this way. Consequently it acts as a river for energy transfer from the surface to space. As a river it is perhaps the most vigorous on the planet. The ‘supposed greenhouse effect’ is no impediment to this process. Common sense dictates that a static atmosphere is required if the rate of loss of energy is to be curtailed and back radiation is to return energy to the surface via a so-called greenhouse effect. The atmosphere is anything but static. We insulate to stop the air moving. The atmosphere is air.

Plainly we must look to other modes of causation to explain the temperature increase that has been observed.


The following observations demonstrate the primacy of cloud that acts to reflect solar radiation, so determining surface temperature:

  1.   For the globe as a whole the sea is always warmer than the land and the global average for both the land and the sea is greatest in July.Global sea and air
  2.  A maximum in June/July is an anachronism. Earth is farthest from the Sun on July 4. The quotient of energy available from the sun (above cloud level) is 6% less in July than in January.

Why is the Earth warmest when it is most distant from the sun?

In northern summer the sun heats the abundant land masses and the land being opaque the surface quickly warms and with it the atmosphere.  The supply of water vapour to the atmosphere lags behind the increase in the water holding capacity of the air. There is less ocean in the northern hemisphere. In any case water is transparent and it stores energy to depth releasing it slowly. The upshot is that the heating of the atmosphere by the land rich northern hemisphere directly and dramatically reduces cloud cover.  The July maximum in global temperature is due to an increase in the diminished total of solar energy that is available in July. The amount made available at the surface is so much greater in mid year as to result in a temperature peak in mid year.

In northern autumn gathering cloud reflects more solar radiation and the globe therefore cools as its orbit takes it closer to the sun. That’s a pity because as I explained in the last post the globe as a whole is cooler than is desirable from a plant productivity point of view and all life ultimately depends on plants.


From:http://www.iac.es/adjuntos/cups/CUps2015-1.pdf we have direct measurements for Izana observatory in the Canary Islands of  the number of days where cloudiness (red and yellow) is recorded and conversely the number of days where the sky is sufficiently devoid of clouds to achieve a clear sky rating (green).  The attenuation of cloud cover in northern summer is evident.
Cloud cover Teide Observatory, Spain


From http://www.ccfg.org.uk/conferences/downloads/P_Burgess.pdf we have direct measurements of solar radiation at the surface.

Radiation as a function of time of year and cloud cover in Bedordshire

At this site in the UK cloud is responsible for the attenuation of solar radiation by a minimum of 26%  and a maximum of 90%.


Surface temperature is directly modulated by cloud cover as demonstrated in the following satellite photograph.Temp varies with cloud cover



It should be abundantly clear that it is the mediation of energy input by clouds that is the most influential determinant of surface temperature. Zones that experience high surface pressure are relatively cloud free. The essence of change in the ‘annular modes’ lies in a shift of mass from high latitudes due to ozone heating that drives down surface pressure. High southern latitudes have lost atmospheric mass for seventy years on the run. Lost mass has been distributed across the globe adding to surface pressure in those parts of the globe where increased surface pressure  is allied with relatively cloud free skies. In chapter 3 we observed that the globe warms when geopotential height increases. Geopotential height increases when surface pressure increases as the core of a high pressure cells entrains ozone from the stratosphere.


Cloud comes in all shapes, types, sizes altitudes and density and is notoriously difficult to measure.

At http://www.atmos.washington.edu/~sgw/PAPERS/2007_Land_Cloud_JClim.pdf  we have a paper documenting change in cloud cover and establishing correlations between cloud cover over Europe and the North Atlantic Oscillation, a local manifestation of the the northern annular mode.

Survey of cloud cover change


Note that in the mid latitudes in winter, cloudiness is associated with incursions of warm, moist air from the tropics promoting a positive correlation between the presence of clouds and surface temperature. The band of cloudiness formed by frontal activity occurs in the interaction zone between cold dry air of polar origin and warm air of tropical origin. People  might observe that ‘its too cold to rain’ when the air is coming from high latitudes. Alternatively they might say, they can ‘smell’ the rain coming when the air is humid and it comes from lower latitudes. Or they might say, ‘the temperature will increase when it starts to rain’.

To suggest that the positive correlation between cloud cover and temperature in winter is due to back radiation from clouds or that there is a positive causal relationship between the presence of cloud and surface temperature due to back radiation involves an error in logic. Its warmer in winter when there is cloud about  because the cloud arrives with a warmer, moister body of air that originates in tropical latitudes.  Cloud does not cause warming in winter and an opposite effect in summer. Cloud always involves an attenuation of solar radiation.


There should be no confusion as to the effect of cloud on surface temperature. To suggest that the climate is warming due to back radiation indicates a lack of appreciation of the reality of the way in which the atmosphere mediates the flow of solar energy to the surface of the planet and a lack of appreciation of the manner in which the atmosphere actively cools the surface.

To suggest that back radiation is causing warming without first ascertaining that cloud cover has not fallen away indicates an appalling lack of common sense and responsibility.  This brand of ‘science’ is unworthy of the name.

Many sceptics of the AGW argument wrestle with the notion that there is some sense in the idea of ‘back radiation’ from clouds and a CO2 rich atmosphere and try and assess whether the ‘feedbacks’ built into IPCC climate models are an exaggeration of reality. Most unfortunately this belief in cloud radiation feedback and the primacy of a ‘back radiation effect’ has given the ‘anthropogenic’ argument legitimacy.

Back radiation is no defence against a wind chill effect! You wear clothes to combat conduction and convection. To think otherwise is to be muddle headed.

The manner in which the Earth warms and cools indicates that there is another mechanism at work. This other mechanism has primacy and a study of the manner in which the globe has warmed and cooled suggests that it is also a sufficient explanation of the change that has occurred. It is a two way process, capable of warming and cooling as we observe on an inter-annual basis. The mechanism that is responsible for inter-annual variations is also responsible for the decadal and longer trends. When you understand the mechanism you will see that cooling has already begun and more cooling is the immediate prospect.

If you can not explain the inter-annual variations you fail climate 101. UNIPPC, you fail climate 101.


5 The enigma of the ‘cold core’polar cyclone


Source of data above:http://www.esrl.noaa.gov/psd/cgi-bin/data/timeseries/timeseries1.pl

When I started looking into atmospheric matters back in 2008 and I discovered that the temperature of the Antarctic in mid winter at 10 hPa had jumped in the 1970’s as the atmospheric pressure at the surface took a plunge it started me on a search for answers. This post tells you what I have discovered as a private self funded researcher seven years on.

The cold core polar cyclone

The ascent of the air at the core of a polar cyclone is a mystery because the near surface air in a polar cyclone is cold and dense. Polar cyclones form in high latitudes where the surface and the air in contact with it is very cold. Air that is cold and dense should not ascend. The  unsatisfying explanation that is offered in the meteorological literature has to do with fronts between cold and warm air and the Coriolis ‘force’. But the Coriolis ‘force’ is not a force at all. It explains the direction of rotation and has nothing to do with the force responsible for uplift or down-draft.

Anticyclones form in the mid latitudes where the surface is warmer than in high latitudes. This is the case despite the fact that anticyclones form over water that is relatively cold for the latitude, located on the eastern margins of the oceans. Anticyclones also form over cold land masses in winter. To take the land based anticyclone out of the equation we can examine the summer hemisphere.

It is now possible to examine the atmosphere in real time and toggle back and forward to look at it as on some day in the past. It’s animated too which is a real help. You get spot values at the click of your mouse. This is a fantastic resource for a student of the atmosphere. Find it at:  earth.nullschool.net.

First, sea surface temperature. Observe that the eastern margin of the Pacific is cooler. The ocean moves clockwise, driven by the winds.


The day I have chosen is the first day of September 2015. We will stick to this single day throughout.

Below we have atmospheric pressure with an overlay of wind at 1000 hPa.

The lines indicate the circulation of the winds. Three tropical cyclones manifest south of a large high pressure cell. The high has a central pressure of 1030 hPa.  Cold core Polar cyclones are also in evidence associated with zones of low surface pressure in high latitudes. The air circulates in an anticlockwise direction around cyclones and a clockwise direction around anticyclones.

1000hPa SLP

The map below shows Wind Pressure Density at 1000 hPa (close to the surface) in terms of kilowatts of wind energy per square metre. Tropical cyclones are powerful systems but the energy is generated very close to the core and has little lateral spread . By contrast the cold core polar cyclone shows a fraction of the energy that is generated in a tropical cyclone and the energy manifests remotely, and in particular over the oceans rather than the land.


At 850 hPa (1000 metres) the energy attached to a cold core polar cyclone manifests over both the land and the sea.


The map below shows air temperature at 850 hPa (1000 metres). Shades of green represent temperatures above 0°C . Shades of blue indicate temperatures below 0°C. It is apparent that the air in cold core cyclones at 850 hPa is close to 0°C, while the air in the major anticyclone rejoices in a temperature of 12°C, well below the 24°C that is the temperature of the sea surface only 1000 metres below.

850 Temp

Below we have the temperature of the air at 500 hPa, roughly 5.5 kilometres in elevation with half the atmospheric column below and half above. All temperatures are sub zero.  At its heart the anticyclone has a temperature of -5°C  while the cold core cyclones have central temperature between -24 and -35°C.

500 temp

Below again: There is a marked increase in wind pressure density on the outer margins of cold core cyclones at 500 hPa. But each polar cyclone conserves a relatively extensive core where the horizontal vector in the movement of the air is slight and we can infer that the vertical vector is pronounced. These cold core cyclones are now immensely more powerful and extensive systems than tropical cyclones.

500 WPD

At the 250 hPa pressure level, about 9 kilometres in elevation, extreme wind speeds manifest on the outer margins of cold core polar cyclones while the cores of vertically ascending air are extensive.

250 wind

Below, we see that at 250 hPa the ascending air in the core of a polar cyclone is warmer than the the rapidly rotating air that surrounds it.

250hPa temperature

So, we see that at 9 km in elevation a polar cyclone has a warm core. The laws of physics are not flouted by the ascent of relatively dense air that is somehow magically displaced upwards by air of lower density. It is the power generated aloft that pulls denser air into the system from below. In effect we have the engine attached to an extraction fan above, a pipe extending towards the surface, narrowing as it does so, sucking dense air into the upper atmosphere. This is like a vacuum cleaner that sucks in cold air and pushes out hot air. At 250 hPa just 25% of the atmosphere is above and 75% below. Somewhere between the 500 hPa and the 250 hPa pressure level (5.5 km to 9 km) sufficient energy is imparted to the atmospheric column within these polar lows to reduce the lapse rate of the air with increasing altitude to the point that the air within these polar cyclones becomes relatively warmer and less dense than the air that surrounds the core.

Gordon Dobson who invented the spectrophotometer to measure total column ozone in 1924 very quickly discovered that ozone mapped surface pressure with more ozone in the atmospheric column of low pressure systems than in high pressure systems. De Bort, the Frenchman who put more than 500 balloons into the atmosphere around 1900 discovered that the air became warmer in cells of low surface pressure at a lower elevation than in high pressure cells. Both gentlemen were independently wealthy private researchers who considered that the science of their day was not settled.

There should be no mystery as to the cause of this phenomenon. Once initiated, the system gains momentum by virtue of the fact that the air that is being elevated is warmer that the air through which it ascends. This is so because the surface air is warmer than the air aloft. This gives rise to very extensive areas of extremely low surface pressure in high latitudes.

As the ozone content of the air increases in winter, the jet streams so formed become more intense.

As the ozone content of the air varies from year to year, so too does surface pressure in high latitudes.

As surface pressure falls away in high latitudes it rises in the mid latitudes where anticyclones form.

How far does the air ascend in polar lows?

70 wind

The pattern of ascent is still present, albeit more gently so, at 70 hPa (above) with 93% of the weight of the atmosphere below, an elevation of just 17 kilometres. A balancing descent occurs in the mid latitudes associated with anticyclones.

10hPa wind

The air is still mobile at 10 hPa (30km) with 99% of the atmosphere below. Importantly, there is both ascent and descent.

10 pacific descent

See above. At 10 hPa in early spring in the southern hemisphere the air is very mobile in high latitudes. Gentle descent is apparent over the cold waters south of the equator in the eastern Pacific. This feeds ozone into anticyclones.

70 pacific desc

Above, at 70 hPa we have very strong ascent in the high latitudes and broad areas of gentle descent in the mid latitudes. The southern hemisphere is approaching its seasonal peak in ozone  partial pressure that occurs in October. The winds at 70 hPa reflect where that peak occurs. We are looking at a donut shape sitting atop the Antarctic continent.

250 sth pacific

At 250 hPa the southern hemisphere is in a frenzy driven by differences in ozone partial pressure between air masses of different origin. Patterns of descent will drive the evolution of geopotential height, cloud cover and surface temperature in the manner described in chapter 3.

500 globe pacific

At 500 hPa there is a relaxation in the circulation.

700 desc Pacific

At 700 hPa the winds are more benign. The pattern of descent over the south Eastern Pacific is typical.

700 pacific

The pattern of surface pressure is closely aligned with surface winds. Very high pressure in the south eastern Pacific is associated with very cold waters in this region promoting settlement. This area gains atmospheric mass very strongly when it is lost at 60-70° south very much influencing the strength of the trades and the westerlies across the Pacific and thereby the ocean currents that determine the relative extension of the ‘cold tongue’ across the equatorial Pacific that is the essence of the ENSO phenomenon.

70 Antarctic SLP wind

The flow of the air over Antarctica at 70 hPa is very much related to the pattern of surface pressure forced by the ozone content of the air at lower altitudes. It is the ozone content of the air between 500 hPa and  the 250 hPa that is deterministic so far as the circulation of the winds is concerned.

Notice the zone of high surface pressure over the Antarctic content that sets up a pattern of descent near the surface.

Mesospheric air descends in the core of this circulation. It is relatively deficient in ozone and has damaging levels of the ozone destroyer NOx . The British Antarctic base at Halley Bay lies to the East of the Antarctic Peninsula. When  total column ozone was first measured there using Dobson’s spectrophotometer in 1956 Dobson was amazed at the relative deficit in ozone by comparison with the northern hemisphere. But the deficit disappeared in November, as it does today. As surface pressure has fallen in high southern latitudes due to the increase in the partial pressure of ozone in the donut shaped pattern of polar cyclone activity that surrounds Antarctica, as atmospheric pressure has increased in the mid latitudes of the southern hemisphere expanding the Hadley cell in response to falling pressure in high latitudes, the donut of low pressure has been forced south, the tongue of mesospheric air is narrowed but it penetrates more deeply. This is the chief, albeit unrealized, one hundred percent home grown, all natural, ozone hole dynamic.


So called ‘cold core’ polar cyclones are warm core aloft and they do not contradict the laws of physics. By virtue of the fact that they depend for their activity on the partial pressure of ozone in the air that fluctuates on all time scales we must look to the cause of these fluctuations if we wish to understand the climate at the surface of the globe. It is the exchange of atmospheric mass between high and other latitudes that determines surface wind, cloud cover , the energy flux into the oceans and surface temperature. This is at the root of weather and climate change. I will demonstrate in later chapters that what happens in Antarctica rules all.

The flux in surface pressure that is wrought by ozone is greatest in winter and this puts a date stamp on the  surface temperature record. That identity will be revealed in due course.




4 The geography of the stratosphere mk2

My previous effort in relation to this chapter attracted very few readers. So, here I re-state the argument, hopefully in a more accessible form. I do so because the subject matter is critical. A great deal depends upon an appreciation  of the matters described below. If there are queries and disagreements lets have them up front in the comments:

The description of the nature of the stratosphere given below differs from accounts that you will see in the literature in important respects, and for good reason. The stratosphere is a complex entity, much more complex and interesting than the troposphere. By virtue of its effect on atmospheric pressure in high latitudes (directly responsible for Polar Cyclones and the Jet Streams) the stratosphere drives weather and climate, the planetary winds and surface temperature on all time scales. This realization is new, a product of investigation into what is known as the Annular Modes (ring like modes) of variation in surface pressure over just the last couple of decades and insights into the origin of polar cyclones together with the observations of the early French balloonist De Bort, Gordon Dobson and others that ozone maps surface pressure.  It has long been known that there is enhanced total ozone in cyclones of ascending air (called cold core cyclones) but the significance of this observation has been unrealized.  Ozone heating of the upper part of the atmospheric column is responsible for these cyclones.They are so pervasive in high latitudes that the formation of more cyclones and the intensification of existing cyclones changes surface pressure in high latitudes shifting atmospheric to or from high latitudes in the process.

It is the difference in atmospheric pressure at the surface of the planet that determines the planetary winds, patterns of precipitation and surface temperature so we must get a grip on the nature of Polar Cyclones if we are to understand surface climate.

There are three modes of heating of the air, heating by a warm surface, heating within the atmosphere due to the release of latent heat and heating within the atmosphere by absorption of long wave radiation from the surface of the Earth. Notably, it is the heating of the air due to the presence of the greenhouse gas ozone that accounts for the warmth of the stratosphere and the generation of polar cyclones that are the manifestation of the strongest modes of atmospheric heating on the planet, albeit hitherto overlooked.

In this account I focus exclusively on the southern stratosphere because it is simpler, being relatively unaffected by north south intrusions by land masses, except in the notable instance of South America. In the southern hemisphere a strong accent is given to polar processes due to the  presence of the Antarctic continent almost symmetrically distributed about the pole.  In southern winter the massive and relatively invariable heating of the entire northern hemisphere adds to surface pressure in high southern latitudes. In fact this seasonal shift of atmospheric mass to the southern hemisphere creates a planetary high in surface pressure over Antarctica. The atmospheric dynamics resulting from the donut shaped peak in ozone partial pressure at 60°-70° south latitude result in an ‘ozone hole’ over the polar cap. The chemical composition of the space inside the donut of ozone rich air, and the manner of its escape into the wider atmosphere has profound implications for the evolution of the ozonosphere and the extent of cloud cover globally.


All the remarks under this head address what can be observed in the diagram immediately below. Please give it your closest inspection.

Temp at 10hPa over Antarctica

Source: http://www.cpc.ncep.noaa.gov/products/stratosphere/polar/polar.shtml

The temperature profile at 10 hPa that is mapped above exhibits differences in the evolution of temperature between the hemispheres. This has nothing to do with the sun or short wave solar radiation. Air temperature varies with the place that the air comes from and the upper atmosphere is an active rather than a passive medium. Cooling in high latitudes in winter represents a regime of supercooling that is completely unrelated to the progress of the temperature at the surface. This supercooling is the thermal consequence of the penetration of the  polar stratosphere by very cold, ozone deficient air that originates in the mesosphere. When mesospheric air is present, temperature plummets and when it is not present the space hitherto temporarily occupied is taken by warmer, ozone rich air that is immediately adjacent. That pattern of arrival and departure is mapped in shades of blue and green above. By virtue of the erosive effect of NOx compounds present in mesospheric air the ozone content of the wider atmosphere is much affected as mesospheric air is inevitably mixed into the wider atmosphere. It is obvious from the diagram above that this has knock on consequences over a very wide latitude band. Mixing processes speedily  impact the evolution of ozone partial pressure and temperature at lower latitudes and especially so in the northern hemisphere where a prevailingly slight presence of mesospheric air enables a regime of high ozone partial pressure and elevated temperature to prevail. In this regime, small additions of mesospheric air to the melting pot result in widespread change.

The temperature of the stratosphere is a function of the extent of the heating by short wave radiation from above, long wave infra-red from the Earth itself and the dynamics of the movement of the atmosphere affecting the extent of the presence of mesospheric air. Atmospheric dynamics vary strongly with latitude.

The chief absorbers of outgoing infra-red radiation from the Earth are water vapour, of which there is little in the stratosphere, carbon dioxide, that is uniformly distributed and therefore of little account as far as surface pressure is concerned and ozone that is much affected in its concentration by the impact of photolysis. In addition the presence of NOx that catalyses the destruction of ozone affects ozone partial pressure as NOx is rapidly spread across the stratosphere.

Heating by short wave incoming radiation is the dominant influence on the temperature of the stratosphere above 10 hPa affecting the most elevated 1% of the atmospheric column by weight. Long wave infra-red radiation from the Earth drives the warming of the stratosphere very broadly between about 300 hPa and 10 hPa, although the lower fuzzy margin is higher at the equator and lower in high latitudes. The lower fuzzy margin corresponds with the tropopause near the equator but nowhere else. Outside near equatorial latitudes, as the air increasingly dries, the forces responsible for the cold point at the tropical tropopause wither away and the descent of cold mesospheric air at the pole in winter moves the cold point upwards towards 10 hPa. This divorces the cold point from any association with ozone distribution or the distribution of water vapour and the notion of a ‘tropopause’ that happens to be conjunction-al with the cold point and the presence of very dry air in low latitudes. It is only conjunction-al in low latitudes because massive continuing uplift keeps ozone aloft. The notion of a tropopause has no meaning, and is therefore un-locatable in mid or high latitudes.

Marked differences in ozone partial pressure give rise to a very different stratosphere between winter and summer. This reflects the presence of mesospheric air and enhanced O3 in high latitudes in winter.

The pressure of photolysis on ozone diminishes as the path through the atmosphere lengthens accounting for a natural increase in ozone partial pressure with latitude and more so in winter. This sets the background level of ozone according to latitude, less at the equator and more ozone closer to the poles. But it is over the polar caps that mesospheric air establishes its presence interfering with the aforesaid pattern and via its interaction eroding ozone partial pressure throughout the stratosphere.

To reiterate and expand: The impact of NOx from the mesosphere occurs via a tongue of mesospheric air that enters the stratosphere in winter. Entry is facilitated via an increase in the velocity and mass involved in the overturning circulation driven by ozone in high latitudes (forming Polar Cyclones). Descent that represents the return arm of this circulation occurs at the pole and in the mid latitudes. Ascent involving that part of the column containing ozone occurs in an ‘annular ring’ that is most intense at 60-70° of latitude and descent is apparent at 20-40° of latitude especially over cold waters on the Eastern side of the major oceans. The latter constitutes the corresponding ring like mode of descent in the mid latitudes. Because the circumference of the Earth is so much greater in the mid latitudes than it is over the polar cap the overturning circulation heads in this direction, the line of least resistance, rather than towards the polar cap. Descent over the polar cap is by comparison almost a stalled circulation in the sense that the rate of descent is very slow. If it were fast and continuous we would have much less ozone in the southern hemisphere than we do currently. The southern hemisphere would become almost uninhabitable. Fortunately for the inhabitants of the Southern Hemisphere NOx rich air from the mesosphere enters the wider stratosphere at a much slower and intermittent rate across the leaky polar vortex and is replaced from above. However there is one part of the southern hemisphere where the mesospheric air tends to lean northwards and that is towards the continent of south America. In the high Andes where elevation enhances exposure to UV light, the suicide rate peaks in spring.

The rate of descent of mesospheric air, the surface area of the interaction zone, its depth of penetration and impact on the wider stratosphere across the entire globe is surface pressure dependent. The landmass of south America interrupts the formation of polar cyclones. Zones of very high surface pressure form to the East and west of the continent in the mid and high latitudes associated with the presence of very cold oceans. The tongue of mesospheric air expands in its volume as surface pressure increases over the polar cap. Surface atmospheric pressure at the pole is to some extent just a proxy for the rate of overturning of the ozone driven circulation in high latitudes and to the remaining extent a proxy for the tendency of the atmosphere to be shifted equator-wards under the impact of geomagnetic pressure wrought by the solar wind. In the long term the latter determines the issue driving ozone partial pressure one way or the other and with it surface pressure over the polar cap and in the mid altitudes. Hence the relentless loss of mass since 1948.

It is important to realize that infrared emission from the Earth is never limiting, even at the highest latitudes. That stream of energy that is available both day and night and at all levels of the atmosphere. Ozone absorbs at 9-10 µm in the peak of the energy spectrum emitted by the Earth. Ozone is most enhanced between 30 hPa and 10 hPa shading away in concentration to the limits of the mesosphere on the one hand and downwards into the lower atmosphere to an altitude that varies with latitude on the other. Because the energy flow from the Earth is inexhaustible in terms of the amount intercepted by ozone there is little difference in the temperature of the stratosphere between day and night. This is a very different situation to that at the surface where short wave energy from the sun heats only during the daylight hours and wide diurnal fluctuations in temperature are the rule. If you read that the temperature of the stratosphere is the result of the interception of of short wave radiation by the atmosphere check the credentials of the author of that statement, even though he is a co-author or even a chairman of the committees responsible for UNIPCC reports. That author is not getting to grips with the nature of the ozonosphere.

As already mentioned geography ensures that the cooling in the stratosphere over the Antarctic during the polar night is much enhanced by comparison with the Arctic. The Antarctic at 1 hPa is slightly warmer in summer due to orbital influences. The massive annual range of temperature over Antarctica due to the depression of the winter minimum is anomalous because, at the surface, it is the northern hemisphere that exhibits the greatest swing between summer and winter.   This enhanced range is mainly the result of the presence of very cold mesospheric air over the Antarctic pole in winter and its relative exclusion between December and March.

The relative absence of cold mesospheric air in southern spring of recent times has resulted in a marked increase in the temperature of the polar cap and the intensification of the southern circulation. This trend is related to the 15 hPa fall in surface pressure over Antarctica since 1948.  The decline very likely began at the turn of the nineteenth century. The process of withdrawal of mesospheric air was already well under-way in the 1940’s.  To some extent the warming of the polar cap between 65-90° of latitude is due to a narrowing of the tongue of mesospheric air due in turn to enhanced uplift closer to the margins of Antarctica as the air that is external to the vortex becomes warmer in late winter and spring, reflecting its increased ozone content. In this way atmospheric dynamics drive ozone content and the extent of the ‘ozone hole’ over Antarctica. That hole was present at the time of the earliest measurements of total column ozone by Dobson’s colleagues at the British Antarctic base situated in Halley Bay in 1956, astounding Dobson and leading him to question the validity of the measurement. It was not what was expected given the pattern that he had observed in the Northern Hemisphere. The Antarctic ‘hole’ disappeared in November at that time as it does today. Measurements of total column ozone in the following year confirmed that it was the stratosphere and not the instrument that was responsible for the difference. Students of history will remember that the use of Freon in air conditioning and domestic refrigeration only really got going in the post WW2 era.

The anomalous warming of the Antarctic stratosphere that shows up between October and December in the data for 2014 in the diagram above is a function of the sustained ozone content of the air after the period of the polar night and despite the growing impact of photolyzing solar radiation as the sun rises higher into the sky and the atmospheric path shortens. Plainly it is the rate and the extent of the descent of mesospheric air that rules the temperature regime over the Antarctic polar cap rather than the angle of the sun.

By comparison the descent of mesospheric air in the Arctic comes in fits and starts allowing the northern hemisphere to maintain a much enhanced level of ozone in the stratosphere.

Again, looking at the diagram above, the temperature of the entire stratosphere is much affected by short term dynamical processes that manifest in the Arctic in winter. The descent of mesospheric air over the Arctic polar cap has knock on effects across a very wide band of latitudes. In terms of timing, the plethora of warming events in the Arctic has a life that is independent of the march of the sun. Again, it is the dynamics within the atmosphere that determine the pattern of evolution of temperature in the Arctic.


Gordon Dobson who invented and built a spectrophotometer to measure the quantity of ozone in the atmospheric column according to the attenuation in the energy at the wave length that destroys it (and is partially used up in the process) observed that ozone affects the upper troposphere:

The chief result of these measurements at Arosa  (1932 Swizerland 46.78° N) was to show with certainty that the average height of the ozone in the atmosphere was about 22 km and not about 40-50 km as had been thought before. They also gave a fair idea of the vertical distribution, showing that the main changes took place at heights between 10 km and 25 km. This made it much easier to understand why changes in the total amount of ozone should be so closely correlated with conditions in the upper troposphere and lower stratosphere.

hPa Km
850 1
700 2.5
600 3.5
500 5.0
400 6.5
300 8
200 11.0
150 12.5
100 15
30 23
10 30
1 45

We may think it strange that Dobson writes about the presence of ozone affecting the upper troposphere because it is often (always) assumed that the quantity involved is immaterial. But, in fact the issue as to whether ozone is present at 10 km in the mid latitudes or not, and of significance to weather and climate, is worthy of close examination. Is the boundary between the ozonosphere and the lower atmosphere actually fuzzy?

The French balloonist deBort  had actually settled the issue at the turn of the 19th century when he observed that the ‘isothermal layer’ as he called it was encountered at  9-10km when surface pressure was low and at 12.5 km when it was high but let us not take too much account of that. He is French and we are British….and the message got awfully rusty in the effluxion of time…or did we simply regard him as a crank.

A simple method of ascertaining where ozone begins to affect the temperature of the atmosphere is to inspect the rate at which temperature falls with elevation. The rate of change of temperature with elevation is affected by the release of latent heat (predominantly a near surface phenomenon) and the presence of ozone (an upper air phenomenon), both reducing the lapse rate. In parts unaffected by precipitation or ozone heating the decline of temperature with elevation should be the dry adiabatic lapse rate of about 10°C per 1000 metres. As ozone begins to affect the temperature of the air the lapse rate should immediately fall below the dry adiabatic lapse rate…..or whatever the rate has been to that point of elevation.

At any concentration above zero ozone has the ability to raise the temperature of the air via absorption of long wave energy from the Earth and the instantaneous transfer of this energy to surrounding molecules.  At 30 hPa where the ratio between ozone and other atmospheric constituents is greatest the actual ozone content is only about 30 parts per million, well below the concentration of CO2 at 400 parts per million. But, by virtue of its uneven distribution it is responsible for the stratosphere. Strangely, when we inspect the curves there is no evidence that down radiation from an ozone rich layer causes an increase in the temperature of the air below…..but that is an entirely different type of investigation that should not distract you or me at the moment.

In an effort to locate the effective starting elevation of the stratosphere the thermal profile of the atmosphere will be mapped in 10° latitude bands between the inter-tropical convergence zone just north of the equator and the southern pole. The data is for the year 2014 available in the database that can be accessed at: http://www.esrl.noaa.gov/psd/cgi-bin/data/timeseries/timeseries1.pl  We can delve into the distant past later on.

The inter-tropical convergence

Here the South East Trades meet the North East Trades and a line of tropical thunderstorms rings the globe, especially in the afternoon.

Because the horizontal scale is in pressure levels rather than metres the intervals on the horizontal axis are not constant. However the blue line indicates a lapse rate of 6.44°C per 1000 metres that is a true reflection of  the lapse rate between the surface and 600 hPa a distance of 3500 metres with the temperature falling 22.54°C over that interval. The red line represents a lapse rate of 6.86°C per 1000 metres that is  a true reflection of  that particular lapse rate between 300 hPa and 100 hPa where the temperature falls 48°C over 7000 metres. The dry rate of 10°C per 1000 metres can only be attained if there is a lack of warming from any source. The degree of uplift at the ITC and the presence of appreciable moisture can be assumed to reduce ozone to near zero levels below 100 hPa. Away from the ITC both uplift and moisture levels do fall away allowing ozone to penetrate below the 100 hPa pressure level and down to less than 10,000 metres in low pressure cells. Let us assume however that  ozone is not present unless the lapse rate falls below 6.86°c per 1000 metres, the slope of the red line. That is the conservative approach.

Both the blue and the red lines have the same slope in all diagrams that follow. All the diagrams have a common vertical and horizontal scale so that the slope of the blue and red lines is invariable.

There is a cold trap (about -80°C) at 100 hPa that is said to promote a dry atmosphere above this pressure level. In practice clouds do manifest in the lower stratosphere, particularly in the region of the south East Asian warm pool.  A high rate of uplift results in he sudden appearance of ozone above 100 hPa and a steep increase in temperature above that pressure level. At 100 hPa only 10% of the atmosphere by weight lies above while 90% is below.  In terms of distance there is 15 km of atmosphere below and another 15 km to get to the 10 hPa pressure level so the graph exaggerates the rate of increase in temperature with altitude above the tropopause.

At no other latitude do we see as steep an increase in temperature in the stratosphere. At no other latitude is the stratosphere as elevated at its inception.

At the poles in winter the temperature of the air falls to minus 85°C. Convection over the inter-tropical convergence keeps ozone so much at bay as to produce exactly the same temperature, -85°C at 15 km in elevation.

Notice that the month to month variation in the temperature of the stratosphere over the I.T.C. at 100 hPa and higher is greater than is seen in the troposphere below.  At 100 hPa temperature is depressed in December and elevated in August when ozone partial pressure increases strongly outside the margins of the Antarctic polar vortex. This testifies to the vigour of mixing processes in the stratosphere.

Equator to 10° south


Between the equator and 10° south latitude the thermal structure of the atmosphere is very similar to that at the inter-tropical convergence.

10-20° south


At 10-20° south latitude a slight reduction in the lapse rate above 300 hPa indicates the presence of ozone in the atmospheric profile.

A temperature of about minus 30°C at 300 hPa is common to latitudes below 20°.

At 100 hPa temperature is warmer by a few degrees than at the I.T.C. The black dotted line has a common length in all diagrams. The minimum or ‘cold point’ warms as latitude increases reflecting an increase in the ozone content of the air with increasing latitude.

20-30° south


At 20-30° south latitude where high surface pressure is the rule, the presence of ozone appreciably reduces the lapse rate above 300 hPa. At 300 hPa the atmosphere is slightly cooler than it is in the tropics.

The temperature at 100 hPa is warmer than in the tropics indicating more  ozone in the air at 100 hPa.

Between the months of August and November in late winter and spring, the ‘cold trap’ and the stratosphere in general is warmer than it is in summer indicating enhanced descent of ozone in high pressure cells at the particular time of the year when ozone partial pressure peaks outside the margins of the Antarctic polar vortex driving a shift of atmospheric mass away from the poles and towards these latitudes. An enhanced rate of descent from the stratosphere brings ozone into what has been hitherto regarded as the ‘troposphere’. If the word troposphere is intended to indicate the absence of ozone to the point where the lapse rate is unaffected then plainly we have a dilemma. The terminology is no longer appropriate to circumstances at this latitude and even less so in higher latitudes. This dilemma can be avoided if the term ‘troposphere’ is  used in reference to truly tropical latitudes and the word ozonosphere is used to indicate air that is warmed by ozone, at this latitude well below the cold point from about 300 hPa or eight kilometres in elevation, less again in zones of low surface pressure. What we have here is data for the average of high and low pressure cells at this latitude.

By virtue of its effect on cloud cover the relatively amplified increase in temperature aloft drives temperature variations at the surface. The mechanism behind the relationship between increased surface pressure anomalous warming at the surface is described in terms of anomalous increases in geopotential height and surface temperature in chapter 3 entitled ‘How the Earth warms and cools naturally’.

30-40° south30-40S

At 30-40° south latitude the presence of ozone markedly reduces the lapse rate of temperature with elevation above the 300 hPa pressure level.

40-50° south40-50S

At 40-50° south latitude the temperature of the ozonosphere at 100 hPa is considerably warmer than at lower latitudes and particularly so in winter.

The temperature at 300 hPa is very little different between 40-50° of latitude and 70-80° of latitude despite cooling at surface with increasing latitude indicating that this is indeed part of the ozonosphere. This warming occurs in the absence of mesospheric air in the summer season and more so in winter when cold mesospheric air is present. However there is obvious cooling of the ozonosphere above 100 hPa due to the influence of mesospheric air in winter the depression of air temperature increasing with elevation. Looking back we see that this trend emerged at 30-40° south latitude. The mechanism by which mesospheric air reduces the temperature of the ozonosphere beyond the margins of the polar vortex that is traditionally seen as containing it (cannot get out), involves both mixing and the chemical erosion of ozone by NOx. This process is fundamental to the long term evolution of ozone partial pressure in the ozonosphere and the temperature at the surface of the planet because it affects the Earth’s cloud albedo. It is the diminution of the flow of mesospheric air over time that has allowed ozone partial pressure to build in high southern latitudes and with it surface temperature and the volume of energy stored in the global oceans. The build in ozone partial pressure has produced a dramatic fall in surface pressure in high latitudes and a less dramatic but highly influential increase in surface pressure and energy gain in the mid latitudes.

The containment of mesospheric air within the polar vortex is an essential requirement if the Earth system is to be entirely self contained and free of influences from our highly variable local star….the sun. Certain people who wish to drive a political agenda will hang on to that notion like a dog with a bone. These people will not want to know about stratospheric processes.

At 40-50° south ozone drives a halving of the lapse rate above 300 hPa and a 10° C increase in the temperature of the cold point by comparison with latitudes only 10° closer to the equator. The lapse rate is particularly curtailed and the temperature of the cold point is particularly affected in the winter/spring period. Temperature above 300 hPa plainly relates more to polar atmospheric processes than surface temperature at this latitude.

So far as the use of the term ‘tropopause’ is concerned we must note that the ‘cold trap’ is unequivocally located in the stratosphere and is further elevated in late winter–spring (reduced descent of mesospheric air). It is warmer in winter than in summer. It is no indication of a ‘boundary’ between spheres of interest climatically. That ‘boundary’ is now to practical intents and purposes  at 300 hPa and the cold point will be lower when surface pressure is lower, as observed by the French balloonist Debort who discovered ‘the stratosphere’ in the 1890’s.  The notion of a ‘tropopause’ is devoid of content in defining the character of the atmosphere in mid latitudes and should be abandoned. The use of the term is rooted in a failure to observe the dynamics that determine the thermal structure of the atmosphere and the origins of the surface pressure regime. We abandoned the use of the term ‘isothermal layer’ as a description of the stratosphere when we found that it is by no means equal and we should abandon the use of the term tropopause and troposphere when we refer the atmosphere outside the tropics. These terms mislead and result in sloppy thinking.

At 40-50° south latitude the marked variation in the temperature of the stratosphere at 10 hPa across the year reflects the impact of the pulse in ozone partial pressure outside the polar vortex where 10 hPa temperature rises quickly to be very close to its annual peak and surface pressure falls to its annual minimum in September-October.

Seventy percent of the depth of the atmospheric column lies above the 300 hPa level at this latitude. It stretches between 8 and 30 km in elevation.

Warmer temperature in the lower stratosphere between June and October is the product of the increase in ozone partial pressure across mid and high southern latitudes in late winter-spring.   Mass transfer from the summer hemisphere and the high latitudes enhances surface pressure in the mid latitudes of the southern hemisphere in winter. The transfer of mass from high latitudes involves enhanced uplift due to ozone heating affecting the entire atmospheric column. That which ascends must descend and it does so in the mid latitudes. The rate of descent and the surface area of descending air is simply a function of the dynamics of ascent in the near polar atmosphere. Again we see a dynamic affecting the Earth’s albedo, stronger at this latitude than at 30-40° south latitude.

50-60° south


At 50-60° south we enter the domain of the ozonosphere proper. The lapse rate is diminished above 500 hPa due to appreciable ozone in the upper half of the atmospheric column.  Regional density differences in the stratosphere promote strong uplift. This is the domain of the Polar cyclone that is generated  between 50 and 70° south.  The ozonosphere drives cyclogenesis, the distribution of atmospheric mass, short and long term weather variations and the evolution of the planetary winds. The notion that the ‘troposphere’ is the ‘weather-sphere’ at these latitudes is silly. None of the circumstances that give this term relevance  in the tropics apply at 50-60° south. The surface itself is very cold. The near surface atmosphere is cold and dry. Cloud is associated with uplift at the junction of warm wet and cold dry air masses. Convection originates in the ozonosphere by virtue of the behaviour of ozone as a greenhouse gas. Heating is then assisted by the release of latent heat associated with frontal activity. Cyclones move equator-wards tending to maintain the distinctive differences that maintain their vorticity until they run out of ozone aloft and moisture below.

The ‘cold point’ that is named the ‘tropopause’ in low latitudes is located within the stratosphere in all months. In June it is found above 10 hPa. As an indicator of the ceiling for convection due to the release of latent heat of condensation it is irrelevant. Wet air never reaches this altitude. The cold point is much warmer than it is in the tropics. The air is very much drier in high latitudes and precipitation is consequently light. But the elevation of the cold point materially assists the process of convection whereby lower density air is squeezed upwards. Convection affects the entire atmospheric column rather than being confined to the atmosphere near the surface. At latitudes pole-wards of 50° south we find the true weather-sphere,. This is the domain of the roaring forties the furious fifties and the screaming sixties. The enormous forces operating aloft are muted at the surface but still rock us back on our heels.

Polar cyclones owe their origin to heating of the atmospheric column by ozone. Heating occurs at all elevations where ozone is found, both above and below the cold point. This heating is driven by long wave infra-red emissions by the Earth itself varying little between day and night, and via energy redistributed polewards by the oceans and the atmosphere so that outgoing radiation has a pattern of annual variation  much less extreme than the variation in the energy supplied in the form of short wave radiation from the sun.

In mid and high latitudes the Earth starts to act like a battery for energy storage and energy supply to the atmosphere at a relatively invariable rate. This energy performs work via the agency of ozone. That work is weather change if we are talking of short term effects and ‘climate change’ in the longer term. The stratosphere is now the ‘weather sphere’ because this is where weather is generated. The partial pressure of ozone evolves on very long time scales.

In climatology as presently taught, what happens in the lower half drives the upper half. Motions in the lower atmosphere condition the distribution of ozone in the stratosphere. This doctrine is absurd. People refer to a coupling process between the troposphere and the stratosphere. What troposphere would that be?

60-70° south60-70S

At 60-70° south latitude, the lapse rate is reduced below and above 500 hPa and we have a very warm cold point in summer and a cold point in winter that approaches the temperature of the mesosphere to which it is proximate. The temperature of the ozonosphere declines in winter due to the influence of mesospheric air that descends inside the polar vortex over the Antarctic continent. Ozone partial pressure increases strongly outside the margins of the polar vortex but the temperature of the air still falls away at 60-70° of latitude in winter.  The nature of the mesospheric air,  the variation in the exposed surface of this tongue of air and the interaction of this air with that in the ozone rich stratosphere determines the evolution of ozone partial pressure in the wider stratosphere in a process unrecognised in ‘climate science’. The tongue of mesospheric air is continually being abraded by a Jet Stream at the polar vortex and large portions escape beyond the margins of the vortex to be gradually absorbed into the ozone rich surrounding atmosphere. Jet streams are wavy discontinuous phenomena and the notion that this air is confined behind some sort of wall is …., not to put too fine a point on it, akin to a fairy tale.

The temperature  at 10 hPa rises quickly from July to be very close to its annual peak by October-November, well before midsummer. Ozone partial pressure outside the polar vortex peaks in October as the tongue of mesospheric air retracts in Spring. This is in part a function of change in surface pressure as atmospheric mass swings back to the now swiftly cooling northern hemisphere. The resulting very late accumulation of ozone despite the fact that the pole is now in full sunlight brings the temperature peak forward in time so that it is only loosely related to the angle of incidence of the sun. See the diagram below for the annual evolution of 10 hPa temperature according to latitude. This diagram represents a 1948-2014 average and conceals change that has brought the temperature peak forward over time, the subject of later chapters.

10hPa T by Lat

The accumulation of ozone in the atmosphere outside the polar vortex from mid winter through till the spring equinox relates to a diminishing influence of the tongue of mesospheric air over the pole at this time of year and the consequent enhancement of ozone partial pressure outside the vortex. As ozone partial pressure peaks the vorticity of the overturning circulation brings raw mesospheric air deeply into the lower stratosphere and an ozone hole manifests, in truth it has been growing in size since March but at this time of the year it is squeezed into a narrower profile.  This is veritably the hole in the donut. Those who talk ‘hole’ seem to be blind to the substantial donut that surrounds it. They have little appreciation of atmospheric dynamics in high latitudes. Chemists need training in atmospheric dynamics if they are to be relevant and helpful so that they avoid the unpleasantness involved in offering themselves as unwitting shills to environmental activists.

Heating of the atmospheric column by ozone results in a planetary low in surface pressure at 60-70°south latitude that is present in all months but most extreme in September/October (see below). There is no counterpart to this in the northern hemisphere, just patches of low surface pressure over bodies of water over a broad range of latitudes. Observe that all the surface heating and the release of latent heat in near equatorial latitudes is incapable of driving surface pressure to the lows seen in the high latitudes of the northern hemisphere, let alone the extreme pressure deficit seen on the margins of Antarctica. It is not the Hadley cell that drives the atmospheric circulation, it is not the heating and uplift in the tropics, it is heating by ozone in high southern latitudes.  Hadley cell dynamics are determined according to the extent of atmospheric shifts from high latitudes because the Hadley cell expands with surface pressure. The ring like modes that characterise atmospheric shifts are a response to the distribution of ozone in high latitudes. The mechanics of the global circulation is driven not from the equator but from the poles and the Antarctic pole in particular. This is the reason why this chapter focusses on the southern hemisphere.


Source: http://ds.data.jma.go.jp/gmd/jra/jra25_atlas/eng/indexe_surface11.htm

As noted repeatedly, the depression of the temperature of the ozonosphere over the pole in winter is due to the descent of very cold, relatively ozone deficient air from the mesosphere. This air is mixed into the mid latitude flow on the margins of the polar vortex by what is referred to as the Jet Stream that pares away at the margins of the tongue of mesospheric air. There is a knock on effect via chemical erosion of ozone by NOx species (NO, NO2) from the mesosphere. It is at 60-70° south latitude that the interaction primarily occurs. That interaction is the engine room of climate change.

70-80° south

At 70-80° of latitude the near surface air is warmer than the surface itself. Its warmth is due to transport from warmer latitudes by the westerlies and the presence of ozone throughout the profile. Slow descent is the order of movement within the atmospheric column enhanced  in the winter, when surface pressure is high and retarded or stalled completely when it is low. The lapse rate above 850 hPa is considerably flattened and in this cold desert with sparse precipitation there is little release of latent heat to contribute to that flattening. Ozone is present throughout the profile.

Practically speaking the entire profile is part of the ‘ozonosphere’ that continues into the mesosphere. Atmospheric dynamics are not related to the coupling of something that exist with  a mental construct that is locally irrelevant.

It is sometimes remarked that we do not understand the coupling of the troposphere and the stratosphere in high latitudes. I have a large dam on my property in which I swim. I have looked intensively for a Bunyip without success. We can give up looking for a tropopause in high latitudes. It’s not a favourable environment for that beast. Its far too cold and dry.

Winter air temperatures are markedly affected by the descent of very cold air from the mesosphere that operates to a schedule unrelated to the march of the sun or the duration of the polar night that runs from March 21st through to September 21st. The schedule is much affected by the overturning of the atmospheric column at and beyond the polar vortex. This phenomenon is driven by the ozone content of the air.

The cooling due to the descent of mesospheric air is episodic as is evident in the diagram below. The flip side of that coin is called a sudden stratospheric warming.  A warming occurs when surface pressure falls away, the tongue of mesospheric air retracts and the space that it formerly occupied is taken by ozone rich air. The polar vortex and the jet stream contract towards the pole, the westerlies stream further polewards and high latitudes warm accordingly. This is the ‘Arctic Oscillation/ Northern Annular Mode/Atlantic Oscillation or the SAM’ in action. Meteorologists however, with their noses very close to their weather maps, converse together talking about the waviness of the jet stream, the incidence of so called blocking events and Arctic outbreaks.60-90T


80-90° south


At 80-90° south the main dynamic affecting the temperature of the atmospheric column is the variable presence of very cold, ozone deficient air descending from the mesosphere. At this latitude it is the interaction between the mesosphere and the stratosphere and whether the air is descending or ascending that determines the temperature profile from the surface upwards.  December is the warmest month at 10 hPa due to relatively enhanced ozone in high latitudes, a near static atmospheric column gently ascending and the relative proximity of the sun bringing a 6% increase in solar irradiance by comparison with July.  There is a reversal of the circulation at 10 hPa in late December as the descent of mesospheric air finally stalls.  The cessation of a regime of vigorous interaction with mesospheric air results in a relatively invariable temperature regime from 100 hPa through to 10 hPa.  In November, very regularly from one year to the next, as the Antarctic closes up shop, the action centre shifts to the Arctic.

Enhanced descent of the atmospheric column containing ozone warms at the 600 hPa pressure level, particularly in winter/spring the cycle in temperature at this level influenced by descent rates, penetration ratios and the flux in ozone partial pressure.

At 300 hPa the Antarctic stratosphere is warmest in February reflecting enhanced long wave radiation and the temporary absence of mesospheric air from the circulation until it enters again, in March. Accordingly, the range of temperature is minimal at all levels above 300 hPa between February and March (see below).

At 850 hPa  the temperature peak is in January driven by the march of the sun.

It is plain that other than quite close to the surface, the forces responsible for temperature and ozone content of the upper and lower portions of the atmosphere are very different.

Back in the 1940s the Antarctic ozonosphere used to be conditioned by the presence of a tongue of mesospheric air throughout the year. At that time 10 hPa temperature was very much cooler than it is today.1hPa T variability10hPa variability in T

30hPa T variability

Inspecting the three diagrams above, we can infer that variability increases the closer one gets to the mesosphere. It is mesospheric air that is the source of that variability and it dances to the tune of surface pressure variation, a good indicator of the vorticity of the overturning, ozone driven circulation.


Change in the rate of uplift in the stratosphere (and descent from the mesosphere) associated with ozone heating outside the margins of the polar vortex occurs on all time scales but is most active in the month of July and August as is apparent above. It is at this time of the year that the interaction between the stratosphere and mesosphere over the Antarctic pole is most variable. The decline in the temperature of the Antarctic stratosphere at 10 hPa since 1998 indicates that mesospheric air is driving down the ozone content and the temperature of the ozonosphere at 10 hPa over time. This heralds cooling. An Earth system that is already on the cool side will become colder. Fortunately, mankind has many tools at his disposal to survive and prosper in adverse circumstances. Clothing helps. Warm slippers and thick socks keep the toes warm and we have a good supply of cheap fuel to keep interior of our shelters warm. In the absence of viable battery storage storable fuel needs to be available both day and night, when the sun does not shine and the wind does not blow. There is no need to fast track so called renewable energy technologies with massive subsidies at the taxpayers expense. There is no ‘carbon pollution’ problem. We are in a regime of carbon enrichment that will serve all species well, including the polar bears that will find more to eat in summer but will unfortunately have to go hungry for a longer period in winter.

A note for theorists: The temperature of the stratosphere at 10 hPa cannot vary on the time schedule and in the manner seen in the last graph according to internally generated ‘planetary waves’.  That is a logical absurdity. Yes, waves there are, but in terms of modes of causation for the temperature of the stratosphere, look elsewhere. Bottom up thinking represents a failure to grasp the reality of ozone flux over time and its relationship with surface pressure, an inability to appreciate the factors responsible for the increase in ozone partial pressure in winter and factors responsible for the variability in incursions of mesospheric air. It represents an inability to grasp the importance of NOx in mesospheric air, the dynamics behind the jet stream and the origins of the ‘ozone hole’. Bottom up thinking makes it absolutely impossible to grasp the cause of the ‘annular mode’ phenomenon. It makes it impossible to appreciate the fact that the planetary winds evolve on all time scales changing the basic parameters of the climate system. Above all, bottom up thinking makes it impossible to model the atmosphere numerically. It dooms us to failure. It opens us up to superstition and exploitation. In general, it’s a disaster. Climate change is manifestly ‘top down’.

2014 is not a typical year. Every year is different. The geography of the stratosphere evolves over time. As we will see the influence of the stratosphere is indelibly imprinted on the surface temperature record.




In this post I want to go straight to the nature of the forces responsible for surface atmospheric pressure and surface temperature. Essentially pressure and temperature are a direct response to the nature of the stratosphere in the local domain. The local domain in the stratosphere changes dramatically according to latitude and season and also over time in response to change in the partial pressure of ozone in the upper atmosphere. Unfortunately, the role of ozone in determining surface pressure, temperature and wind is unrecognised in climate science. This will change.


Gas molecules have weight. The greater the number of molecules in a column of air the greater will be the pressure measured at the surface.

Imagine you are ascending in a balloon and you have an instrument on board that measures atmospheric pressure. At the surface it indicates a pressure of 1000 hPa (or 1 Bar or 1000 millibars or 29.53 inches of mercury).  You watch the needle falling as you ascend.  At 500 hPa with half the atmosphere below and half above you ascertain that your elevation is 5600 metres.  Each time you perform this exercise you get a different figure because the atmosphere is subject to warming that changes its density. If today’s height is 5600 metres and the average is 5500 meters you know the lower half is warmer than normal. The height of a pressure level measured in metres is called its geopotential height. Geopotential height is a proxy for air density below the point of measurement. It is also a proxy for surface pressure with pressure increasing as geopotential height increases.

Air density varies with temperature and moisture levels. The contribution of moisture is most important in low latitudes and close to the surface of the planet where humidity is high. It has little importance in the stratosphere where the air is very dry.

Imagine a column of gas contained within a cylinder that stretches from the surface of the Earth to well beyond the limits of the atmosphere. The gas inside is held in close embrace due to the gravitational attraction of the Earth. The cylinder is open at the top. When the air is heated it rises up in the cylinder but cannot spill over. In this situation surface pressure can never change.

The atmospheric column inside that cylinder could be heated at its base, in the middle or in the upper half. Let’s imagine that the energy could be retained in the zone where the heat was applied. If heating was applied in the bottom or the middle of the column the half way point would move upwards. If the heating was applied to just the upper half of the column then the geopotential height at 500 hPa should not change. Height would increase at all points above 500 hPa but not below. If we find that the 500 hPa level is elevated we can deduce that, despite our intention to heat only the upper half of the column, somehow, energy travelled downwards into the lower half.


If the glass cylinder was just high enough to contain the air prior to heating the column, some of the molecules would spill out of the top of the cylinder as heat was applied.  It matters not where the heat is applied. Then, surface pressure as measured at the bottom of the cylinder would diminish.  This is what happens in high latitudes where ozone causes heating of the upper part of the atmospheric column producing Polar Cyclones. The heating is substantial because to produce low surface pressure (let alone the planetary minimum that is actually achieved) it has to compensate for the fact that the lower part of the column is cold and almost as dense as it is possible to achieve on Earth, and then some.  Atmospheric pressure at the surface can be driven down to 980 hPa. In the process, and because this phenomenon occurs over the entire latitude band 50-90° south a loss of atmospheric pressure in high latitudes represents a transfer of atmospheric mass to other latitudes. When air exits the cylinder, it finishes up somewhere else.

Cyclones that develop in the tropics are called warm core cyclones.  Cyclones that develop under a warm stratosphere are mistakenly called cold core cyclones, referring to the temperature of the air at the surface. Some cyclones form in the stratosphere and do not penetrate into the troposphere. No cyclone can ever be born without a warm core somewhere. The uniqueness of the Polar cyclone is that its warmth is generated aloft.  You can start an updraught in a chimney with a candle at any elevation.

The Polar Cyclone is a product of the presence of ozone throughout most of the atmospheric profile. This is especially so in winter and most intensely in the southern hemisphere in particular. The associated uplift in the lower atmosphere is a response to the intensity of the forces generated aloft. Essentially, the movement of the air is no different to the convergence of air at the surface that occurs in a tropical cyclone in response to the release of  latent heat of condensation aloft, albeit, less aloft than in the polar atmosphere. That such cyclones can be generated in the polar atmosphere testifies to the energy that is transferred from the ozone molecule to the atmosphere at large. That energy comes from the Earth itself in the form of infra-red radiation.


Why is this phenomenon not recognized in climate science: Firstly, the ‘stratosphere’ is supposed to be ‘stratified and incapable of generating convection? Secondly, climate science takes little interest in the stratosphere and is obsessed with the notion that wind is driven by energy flows near the surface. Thirdly climate scientists have failed to notice that what they describe as a ‘troposphere’, a zone rich in moisture that has a cold trap that separates the troposphere from the stratosphere exists at the equator and nowhere else.  The surface is much colder at higher latitudes. The air gets drier in high latitudes. The cold point ascends into the upper stratosphere in winter and no longer constitutes the boundary between one realm containing ozone and another that does not. If we want to discern a boundary between a realm that has no ozone and one that does, we need to look at some other metric, (for example the rate of temperature decline with increasing altitude) to work out where that fuzzy zone is located. The further from the equator the fuzzier it will be. These are mistakes born of over-generalization and a failure to closely observe reality. Fourthly, there is a predilection to consider that the Earth system is closed to external influences after a plethora of unsuccessful attempts over a long period of time to demonstrate otherwise. The notion is that only cranks suggest that the sun could be influential in driving climate. Fifthly, there is a strong tendency for recent generations of ‘climate scientists’ to avoid speculation as to cause and effect in favour of mathematical analysis that is taken to somehow ‘account for’ things. The discovery of connections and even ‘teleconnections’ between disparate phenomena is the apparent purpose. There appears to be a lack of realization that ‘correlation does not mean causation and the lack of correlation does not mean that a causal relationship  can be ruled out.’. Maths rather than physics graduates enter this field. Sixthly, there is the failure to recognise ozone as a very unequally distributed greenhouse gas and that there is a clear signal in the surface temperature record that unequivocally implicates ozone as the generator of temperature variations at the surface of the Earth.  But most critically and disappointingly there is the notion that ‘the science is settled’. That represents either complacency or a determination  to force a particular viewpoint.


Ozone absorbs radiation from the Earth itself at a wave length of 9-10 um. One um is one millionth of a metre in length. This unit is called a ‘micron’ or a ‘micrometre’. Radiation from the earth is heavily concentrated around that wave length. The radiation from the sun arrives in a wide spread of wave lengths of which a small portion is in the infra-red spectrum. In the atmosphere outgoing radiation is closely focussed about the wave length that excites ozone. At the outer limits of the atmosphere we can detect how much ozone is in the air by measuring the attenuated energy that passes by at particular wave lengths. At 9-10 um t’s never entirely used up and is in effect inexhaustible given the tiny concentration of the gas that it excites.


In low latitudes the atmospheric column is warmer in the lower portion and colder aloft due to the relative deficiency in ozone. The increase in density aloft has to be substantial to compensate for the low density below so that surface pressure gets to be on average much higher. Accordingly there is much less ozone in the stratosphere above high pressure cells. The portion of the upper atmosphere containing ozone is smaller in vertical extent in high pressure cells (above 300 hPa) than low pressure cells (above 500 hPa) so that helps.


A polar cyclone that is formed in the stratosphere in winter causes ascent throughout the atmospheric column. Air that rises must be balanced by air that descends. Ozone change in high latitudes is quickly propagated to lower latitudes where the change is muted due to the increasing radius of the Earth as one approaches the equator. In the mid latitudes enormous high pressure cells convey ozone into the lower atmosphere, raising its temperature, evaporating cloud as surface pressure increases. The increase in temperature is tied to the increase in pressure due to the shift in atmospheric mass from high altitudes, in turn due to episodic heating of the high latitude stratosphere tied in turn to a reduction in the rate of ingress of NOx from the mesosphere via the polar vortex.

The implications are: the stratosphere drives weather and climate on all time scales. We need to work out what drives the stratosphere.

Is anything not clear? Please tell me if its not……could be the result of a dyslexic impulse on my part.

In thanks to Stephen Wilde

To see the context refer to the post ‘Heresy and orthodoxy’ and the comments attached thereto: It’s here.

Just a bit of background first up. The sources of convection in the atmosphere are:

  1. Heating at the surface.
  2. Heat released to the atmosphere via condensation of water vapour.
  3. Heating due to the absorption of infra-red radiation in the 9-10 micrometre band by ozone.

Of these three, the most influential agent of convection is ozone but you won’t hear that in the annals of climate science so its not much good Googling the phenomenon.

Gordon Dobson who first measured ozone in the atmospheric column observed that low pressure cells had greater total column ozone than high pressure cells.

We are discussing the movements of the atmosphere and whether and to what extent the stratosphere is ‘stratified’, stable and to that extent unimportant in terms of weather and climate at the surface.

Dear Stephen,
Thanks for your comment. It takes guts to speak your mind and I respect that. You are always welcome here. You have impeccable manners.

Southern Hemisphere winter: There is a descent of very cold mesospheric air inside the polar vortex that reaches down to perhaps 300 hPa. The air is very cold throughout its profile and it gently descends. However, if we look at the temperature at 1 hPa in June 2015 it was -32°C and at 70 hPa -73°C . So, it is warmer at the top of the column than below and with that profile we would expect that it would be ascending.

Southern hemisphere summer: At this moment temperature at 1 hPa over the polar cap (65-90°C) is +6°C at 1 hPa, at 10 hPa it is -26°C , at 30 hPa it is -29°C, at 50 hPa it is -36°C and at 70 hPa it is -40°C. Directly over the pole, the air at 1 hPa is warmer than the average for the polar cap and warmer than the air over Australia or the Equator. The air is gently ascending with core ascent over the pole. Air from the mesosphere is excluded. It is in the state that some refer to as following a ‘final warming’ that happened in December. By March, this situation will revert to the winter pattern. Seventy years ago there was no final warming, no summer pattern.

Whether the air ascends or descends in the stratosphere over the pole is not a function of its temperature profile. It is a function of the strength of the ascent above 500 hPa outside the vortex where the presence of ozone is much enhanced in winter, strongly heating the atmosphere. It drives the density of the air above 500 hPa so low as to result in surface pressures down to 980 hPa in the entire band of latitude 60-70° south. It is the rate of ascent in this latitude band that forces descent over the polar cap and in the mid latitude high pressure cells. Ascent aloft forces ascent below 500 hPa all the way to the surface. The result is the constant presence of 5 or 6 Polar Cyclones of an intensity that equates to a regular tropical cyclone.

In winter the northern hemisphere heats very strongly driven by land masses that return heat to the atmosphere as fast as energy accrues at the surface. So, atmospheric mass shifts strongly to the southern hemisphere. As a result surface pressure over Antarctica reaches a resounding planetary maximum. Off the coast of Antarctica at 60-70° south ozone forces surface pressure to a resounding planetary minimum at exactly the same time. This shifts atmospheric mass from high southern latitudes to low southern latitudes dramatically increasing atmospheric pressure in zones that already experience high surface pressure.

But there is a big difference in how this circulation affects the ozone profile. What goes up must come down. Ozone that ascends into the upper stratosphere via a Polar Cyclone must come down somewhere. It is precluded from descending over the pole. That parking space is occupied by low ozone content, high NOx air from the mesosphere. So, it descends in the very broad high pressure cells that circulate between the equator and 40° of latitude at this time of the year where the body of air involved is so large that it much dilutes the the descending ozone. Nevertheless, ozone warms the entire stratosphere in these latitudes so that it is warmer in winter than it is in summer. That ozone descends into the troposphere affecting cloud cover.

So, just forget about ‘stratification’ in the stratosphere. The circulation throughout the entire atmosphere is driven by ozone that accumulates in the winter hemisphere. The base state of surface pressure is determined by the distribution of land and sea and the revolution of the Earth around the sun. The flux of ozone partial pressure driven by the highly variable interaction between mesospheric and stratospheric air at the winter pole works variations on that base state.

The accumulation of ozone outside the vortex, strongest on the margins of Antarctica,but occupying the latitude band 50-90° south has driven a 15 hPa loss of surface pressure over Antarctica in the last 70 years, in the process further opening the natural clear sky window over the Southern Oceans.

The good (or is it bad) news is that the process stalled about 1998 and is currently reversing. This is reflected in the gradual decline in the temperature of the stratosphere in high southern latitudes currently under way. Outgoing long wave radiation as measured at the top of the atmosphere peaked about 1998 and has been up and down since that time but nevertheless on a plateau. Tropical sea surface temperature is down over the last decade is down in eight of the 12 months of the year. These are the months where surface temperatures are most affects by the rate of entry of mesospheric air into the stratosphere in high latitudes.

What worries me is that the people who advise governments on climate related matters are not driven by observation and deduction but by ideology. We fear the followers of Allah but there are people equally determined, equally ruthless, in their demeanour the latter day descendants of Joseph Goebbels but without his swagger, and they occupy the high ground. These people will not be swayed by reason. They are social engineers with an objective in mind. To these people, the end justifies the means. There is no subtlety to them. They are brutes.

Stephen, thanks for the opportunity to make this comment. But for you I would have devoted the time to something else entirely and perhaps much less fun.


From the outset let me say that my investigations suggest that the ‘Greenhouse Effect’ is not something that we have to contend with in atmospheric reality. There is another mode of climate change that appears to be responsible for the change in the temperature of the globe over the period of record. That mode of change is capable of explaining variations in both the short and long term in both directions,  both warming and cooling. It can explain warming in one place and simultaneous cooling in another. In short it is very well adapted to explain the climate changes that we observe from daily through to centennial time scales ……. and to do so, exclusively and completely.


Geopotential height is a measure of the elevation of a pressure level in the atmosphere. Low heights indicate low pressure zones where the lower atmosphere is dense and cool. High heights indicate a high pressure zone where the lower atmosphere is warm and relatively rarefied.

At a surface pressure of 1000 hectopascals (hPa) the 500  pressure level is located at 5 kilometres in elevation. The upper half of the column (above the 500 hPa level) runs from 5 km through to the limits of the atmosphere at about 350 km. But 98% of the upper portion is located between 500 hPa and the 10 hPa pressure level that is found at an elevation of just 30 kilometres. You can walk 30 km in six hours, jog there in three or get there by bicycle in an hour and a half. From a good vantage point in clean air you can see objects that are 30 km away. As surface dwellers we tend to imagine that the atmosphere is vast. Its not.

Below, we have a representation of the temperature of the atmosphere above the equator in 2015. Notice the location of the 500 hPa and the 10 hPa pressure levels, the gradual decline in temperature from the surface to the 100 hPa pressure level and the very gradual increase above that level. That temperature increase is due to the presence of ozone that, as a greenhouse gas, is excited by long wave radiation from the Earth. Importantly, the change in the temperature in the upper levels is not smooth, its perturbed, and if we were to look at the data across the years and decades we would see strong variability.

This is the situation at the equator where the influence of ozone cuts in at about 15 kilometres in elevation.At the poles it cuts in at half that elevation.

atmosphere over equator

Gordon Dobson who first used a spectrophotometer to measure Total Column Ozone noticed that the distribution of ozone varies with surface pressure. Specifically, the atmospheric column where surface pressure is low is composed of a lower portion that is cold and dense. Low pressure cells originate in high latitudes where the near surface air is cold and dense.  But, the upper portion is rich in ozone to the extent that the number of molecules in the entire column is reduced giving rise to low surface pressure. The paradox is that cold dense air in the lower part of the atmospheric column is accompanied by warmer, relatively less dense air aloft. It is the inflation of the upper half of the atmospheric column, due to its ozone content, that is responsible  for low surface pressure.

Based on Dobson’s observations we can suggest a rule of thumb. It is this: The variation in the density of the upper half of the atmospheric column, due to its ozone content, accounts for variations in surface atmospheric pressure. You might not realise it at this point but this observation turns climatology, as we know it today, precisely on its head. Let me reiterate the point in a different form of words. The ozone content of the upper air drives surface winds. Here is another formulation: The character of the troposphere is determined in the stratosphere.

This was the interpretation of the atmosphere that was gaining ground prior to the 1950’s. But the world of climate science turned from observation towards mathematical abstraction in the 1960’s and has never looked back to take into account observational realities.


High pressure cells are found mainly over the oceans in the mid latitudes. They create clear sky windows. The surface warms because more sunlight reaches the surface rather than being reflected by clouds. Surface pressure is high because of a deficiency in ozone in the more extensive upper half of the atmospheric column that is accordingly relatively dense. Despite relatively low density in the lower part of the column, the enhanced density of the upper half of the column renders the weight of the entire column, and therefore surface pressure, superior.

Surface pressure is intimately associated with surface weather and climate. Surface pressure governs the planetary winds. It follows that the planetary winds evolve according to change in the ozone content of the upper half of the atmospheric column. Yes, in the terms that we are fond of employing, the stratosphere is the troposphere. The stratosphere is where weather and climate is determined. As Gordon Dobson observed back in 1924, weather   evolves according to the ozone content of the air. But the significance of his observation  was lost on those who replaced him. His successors were not observers but ideologues. The account of climate science became a servant of people with a social agenda is told here.

Indeed, the relationship between geopotential height,  surface pressure and surface temperature is intimate. In 2002 Polanski  found that he could accurately reconstruct 500 hPa heights using just sea level pressure and surface air temperature data. He noted that the reconstruction  was more accurate in winter and in mid to high latitudes where variability in both surface temperature and pressure is greater. The reconstruction was less accurate in low latitudes and indeed wherever variability in surface temperature and pressure is low. You can see an account of Polanski’s research here:(http://research.jisao.washington.edu/wallace/polansky_thesis.pdf). This is an excellent instance of deduction from result back to cause. At this point, just remember that surface pressure, geopotential height and surface temperature are linked with surface temperature a product of pressure and geopotential height.


Now to the nitty-gritty of surface temperature variation….climate change:

The three maps below show:

  1. The spatial distribution of geopotential height anomalies in January 2015
  2. Anomalies in the temperature in the lower troposphere in January 2015
  3. Surface temperature anomalies in January 2015500hPa heightsLT Jan 2015

GISS Surface temperature January 2015Map Sources: http://data.giss.nasa.gov/gistemp/maps/    http://www1.ncdc.noaa.gov/pub/data/cmb/sotc/drought/2015/01/hgtanomaly-global-201501.gif, http://nsstc.uah.edu/climate/  http://nsstc.uah.edu/climate/

The first map shows geopotential height anomalies. The second map indicates that the lower troposphere is indeed anomalously warm where 500 hPa heights are anomalously elevated.  The third map indicates that the surface is anomalously warm where heights are anomalously elevated. Remember that high heights indicate a high pressure zone where the lower atmosphere is warm and relatively rarefied.This gives rise to a rule of thumb that accords with common sense and daily observation. The surface warms when atmospheric pressure increases, the air warms and cloud cover falls away. 

The question arises: What causes atmospheric pressure to increase in the mid latitudes. The short answer is a persistent shift in atmospheric mass from high latitudes, especially from the winter hemisphere where ozone proliferates reducing the density of the upper part of the atmospheric column and  so reducing surface atmospheric pressure. For those of you familiar with the notion of the ‘Annular Modes’ or its northern hemisphere manifestation, the ‘Arctic Oscillation’ or perhaps the North Atlantic Oscillation I am here describing the causation of all these phenomena. All involve a change in the relationship between surface pressure in the mid latitudes and that in high latitudes. These are recognised as the dominant modes of natural climate change on all time scales…..cause unknown!


The figure below shows the evolution of temperature at the surface, 600 hPa, 300 hPa and 200 hPa over the Indian Ocean between Africa and Australia at latitude 30-40° south over the period 1976 through till December 1990. In order to facilitate comparison at very different temperatures the data is shown as anomalies with respect to the 1948-2015 average.

Air T in a column

Source for both graphs, above and below: http://www.esrl.noaa.gov/psd/cgi-bin/data/timeseries/timeseries1.pl

It is plain that the higher the elevation the more wildly does the temperature gyrate and not always in concert with the air at the surface.This is also apparent when we compare anomalies in temperature near the surface and at 600 hPa as seen below.Indian Ocean surface and 600hPa T

Plainly, the variation of the temperature at the surface does not explain the variations at 600 hPa. Temperature at 600 hPa is affected by the ozone content in the upper half of the atmospheric column. The ozone content of the stratosphere is determined in the upper atmosphere in interaction with the mesosphere (where the ozone content and the temperature of the air diminishes with increasing altitude) and the ionosphere where short wave solar radiation ionises the atmosphere making possible the formation of ozone and other compounds injurious to ozone).

Indeed, it is un-physical (an impossibility) that a small temperature increase at the surface could be responsible for a greater temperature increase aloft. The upper air is independently warmed by ozone that absorbs long wave radiation from the Earth. Warming and cooling of the air aloft is independent of change in the temperature of the air at the surface and the prime determinant of surface atmospheric pressure (our first rule of thumb) and surface temperature.

To reiterate: High pressure cells are characterised by down-draft.  Air can hold water vapour according to its temperature. Descending air is warming due to increasing compression. Descending air will not produce cloud. To the extent that the  atmospheric column has  cloud it will thin as the air warms.This is why our second rule of thumb works so well. To remind you here it is again: The surface warms when atmospheric pressure increases and cloud cover falls away. 

It follows that surface temperature in the mid latitudes,  a zone inhabited by high pressure cells, much subject to minute variations in surface pressure as atmosphere shifts to and from the poles , very much depends on the ozone content of the air aloft.


The explanation given for the origin of warming in the mid latitudes via loss of cloud cover does not explain warming in the total darkness of the polar night that is pretty obvious in the third diagram above. Why is it so? The mode of causation follows from the minute increase of pressure in mid latitudes and a dramatic fall in high latitudes. It involves the replacement of  cold with warm air. Lower surface pressure in higher latitudes and higher in the mid latitudes involves a change in the origin of the air that always flows from high to low pressure. The solar energy that accrues in low latitudes is constantly being redistributed to higher latitudes via the movement of the air. Exaggerate the movement from the equator to the pole by changing the surface pressure relationship and the pole warms.

The variation in the ozone content of the air in high latitudes, occurring in winter time is the source of change in cloud cover in the mid latitudes. It is also the origin of changes in the winds according to change in the pressure gradient between the equator and the pole. All we need to do to change the average temperature of the surface of the Earth is re-distribute the warmer air.


Dobson’s observation that surface weather varies with total column ozone is a vital clue that leads us to an explanation of the origins of the natural variation in climate. Accordingly we should look carefully at the influence of ozone on the temperature and density of the upper air. Specifically, we must ascertain the particular altitude at which the presence of trace amounts of ozone begins to affect the temperature of the air (and therefore cloud cover) and whether and to what extent that altitude varies with latitude? The answer will lead, in time, because nothing happens as quickly as we might like it to happen, to a revolution in our understanding of the Earth system upon which man depends for his sustenance.

If an increase in the ozone content of the upper air can cause the temperature of the air to increase at the surface of the planet on a month to month basis then we must examine the long term evolution of the ozone content of the air to explain surface temperature change on annual, decade and longer time scales. Equally, we can study the evolution of surface pressure over time that tells us where the wind is coming from. Or indeed, we can simply study the change that occurs in the speed of the wind because that is related to its ability to convey energy from warm to cool locations.These are the central concerns of this work.

Quantifying change due to natural causes is an essential pre-requisite  to the determination of whether in fact, as is widely believed, man is spoiling his nest via the emission of so called ‘greenhouse gases’.

It appears to me, via a close examination of the surface temperature record across the globe that there is no background level of temperature increase that is underpinning the temperature increase (and decrease) that varies so widely (and so naturally) according to hemisphere, latitude, location and season. That natural mode of change is what we need to explain.If we don’t, we will be at the mercy of of  those who want to attribute any and every change to the works of man in order to promote their own, in many instances, expensive and damaging agendas.





Immediately beneath this sentence is the interface of the ESRL Website at: http://www.esrl.noaa.gov/psd/cgi-bin/data/timeseries/timeseries1.pl

ESRL interface

The interrogation that is entered in the form relates to sea surface temperature at 20-40° south latitude around the entire globe (0-360° longitude) taking into account every month of the year adjusting for the reducing circumference of the Earth as latitude increases, presented as a plot. That plot is below.Graph SST

I live at 34° south latitude and at this latitude there is mostly ocean rather than land. Home is on the south-west coast of Australia where the winds are mostly onshore. So, air temperature tends to follow sea surface temperature. I am a farmer and all farmers take a strong interest in climate. I grow grape vines and make wine. The wine expresses the variations in the climate from year to year. To make good wine, the best wine possible, I need to know what is going on. I am told that the climate is getting hotter and I may need to plant later ripening varieties to avoid damaging heat during the ripening period.

All that we can say about this data is that temperature has increased in both winter and summer. But spring and autumn is important to me. The vine leafs out in spring and the fruit matures in autumn. I need to dig deeper.

The data can be acquired in the form of an array of monthly averages as seen below. Its a long sheet of data and I show you just the top and the bottom of the sheet.

SST data top

SST bottom

I want to show you how to work with the raw data to get a much better idea of what is going on in your habitat. Since climate varies primarily according to latitude I define my own habitat, in the first instance, as a band of latitude. If you prefer, you can focus on just part of a latitude band and perhaps air temperature rather than sea surface temperature if you happen to live far from the sea. In this exercise I am going to focus on the entire band of latitude because I am interested in the way climate changes globally.

Copy the data directly from the ERSL website and paste using a simple ‘notepad’ format. Save this as a text file. This is what the notepad sheet looks like.

SST notepad

Next step is to import that data into a spreadsheet via the import wizard available in excel.Text import wizard

Below, the spreadsheet is represented in part with some calculations in red text and a graph of the data in red.

Annual average SST 20-40° south

I have added each months data from January through to December and divided by 12 to yield the annual average. Then I have plotted the column in red. What can we see:

  1. There has been an increase of 0.4°C in temperature in this latitude band over the last 67 years. However, this is within the range of the most extreme inter-annual variability (more than 0.5°C) so it is possible that the factor causing the temperature to swing between the years is also responsible for the whole of period change.
  2. Extreme inter-annual variability prior to 1978 and much less after 1978.

The expansion of the Hadley cell and the consequent southward migration of the mid latitude high pressure cells after 1978 is a feature than many observers have remarked upon. High pressure cells dominate this band of latitude. Summers are dry. In winter fronts attached to low pressure cells that impinge at this time of the year bring rain. The lack of variability post 1978 suggests a reduced incidence of cold winds from the south.  High pressure cells are relatively cloud free. If there is less cloud it can’t come and go. With an expansion of the Hadley cell one would see fewer fronts associated with low pressure cells so the fluctuations in surface temperature would tend to diminish along with the rainfall. Indeed rainfall has declined by 15-25% depending on location.


By adding all Januaries and dividing by 68 (68 Januaries) the average temperature for the month of January over the period 1948-2014 is obtained. It is 22.32°C. Paste the formula across the page. Graph the result as the average monthly temperature.

Average daily temperature is sub optimal for photosynthesis (25°C is optimal) in all months but daytime temperature in the height of summer is almost warm enough to be optimal.  Growth of plants is very slow in the winter months. An extension of the warmth of February into the months of March through to June would increase plant productivity but unfortunately, without irrigation this can not happen. However, grape vines are hardy plants and this is their natural habitat and the best wines come from non irrigated vines. Less rain means less fungus and less spraying so it’s all good.

I want to see how sea surface temperature has evolved over the decades. The process is shown below. First copy and paste the average monthly temperature for the entire period to the head of the spreadsheet immediately adjacent and to the right of the raw data. Follow in the next row with a label for each month. In the next row calculate the difference between the raw data for a particular month and the average for that particular month for the entire period. For instance  raw data for January 1948 is a temperature of 21.957°C and the average for the entire period for the month of January is 22.32128, the difference being 0.36428°C. This statistic is the ‘anomaly’ with respect to the average for the entire period.

Anomaly 1948-56

I plot the anomaly for the period 1948-56 together with the average for that period of 9 years and you see it above. Its plain that this decade was cooler on average especially in April and May. I work through the decades.

When I get to the decade 1997-2006 I see this:

SST Anom 20-40S 1997-2006

The months that were very cool in the first decade are very warm in 1987-96. The months that were slightly anomalously cool in 1948-56 are still slightly anomalously cool.  This is interesting. If there is a greenhouse effect due to increasing carbon dioxide in the atmosphere why is there so small a temperature increase in spring and so large an increase in autumn over this sixty eight year period?

So, I plot the average for each decade and here it is:

Decadal change

It turns out that in the intervening decades, and in particular from 1957 until 1976 the first half of the year has been very much cooler than both the first and the last decade. There is very little change between the first and last decade. Much wider swings have occurred in the past. The decade 1977-86 was much warmer in spring and early summer than it is in the last decade. The decade 1997-2006 that saw some of the warmest years globally in terms of annual averages is the coolest within this particular band of latitude.

Obviously, there is a factor involved that can produce warming AND COOLING and climate change is not a one way train.

Obviously, annual averages are not the appropriate metric if we want to discover the sources of natural variation in climate. We need to focus on monthly data.

What is to come in this blog/book?

If you are genuinely interested in the question of whether man has an influence on the climate then read on.  If you want to know what the sources of natural climate variation are then read on. But if you would rather engage in a ‘willing suspension of disbelief’ as most of us do when we go to the movies or to church on Sunday, and you are ideologically committed to the notion that man is responsible for climate change and are not willing to consider any other possibility then this is not the place for you. In short order you will be confronted by things that will bother you and you will become uncomfortable.

If you can look at data and ask yourself ‘why is it so’ please come along for the ride.