My impression is that  winter of 2016 has been unusually cold. But rather than trust my senses I went looking for data.

Cape Leeuwin is the closest station in the Australian ACORN network. The stated purpose of the network is to maximise the length of record and the breadth  of the coverage across the country.

The Cape Leeuwin lighthouse sits on a granite rock where the Southern Ocean meets the Indian Ocean at 34° 34′ south latitude. When the wind blows from the west it is the Indian Ocean temperature that is being sampled and when it blows from the north east its the air coming off the Australian continent. Three lighthouse keepers cottages made of local limestone sit in the lee of the lighthouse and the wind blows day and night.  At the rear of each house stands an external wash house with an old fashioned twin basin concrete trough and a wood fire heated ‘copper’ for boiling water. Its a lonely spot but the fishing is good. The nearest centre of population to the west is Cape Town.

Leeuwin position
Fig 1 South West of Western Australia, weather data stations on the Acorn network.
Cape Leeuwin
Fig. 2 Temperature at Cape Leeuwin lighthouse.

Black lines record the linear trend as calculated by Excel and indicate cooling. Red dotted lines track the highest summer maximums and the lowest winter minimums and they have a very similar slope to the black trend lines. Horizontal lines enable us to see that the minimum has declined by 0.7°C and the maximum by about 1°C. We know that over the last  five years there has been warming in the tropics that compares in its intensity to that seen prior to 1998. The trend at Cape Leeuwin is directly opposed to that.

ENSO 3.4

Notice the deformation of the curves in mid summer and the skinny little peak in 2014-15, not a good year to be trying to ripen a crop of grapes.

When the air blows off the continent in a warm year the temperature can reach 40°C but that is rare. By contrast there is very little variation in the minimum temperature but it does vary more in winter than summer.

The deformation of the winter minimums looks like ‘shark attack’. This is driven from the Antarctic. It works this way: A change in the intensity of polar cyclone activity in high latitudes modifies the differential pressure between the mid latitudes and the poles and also cloud cover. But for this influence we would see something like a smooth sine wave at the turning points in summer and winter. The beauty of having data for the minimum and the maximum temperatures is that you see the patterns of variability. When you average you lose information. The bits you lose are vital.When you average the temperature for the whole globe you are either a fool or a knave and I would immediately expect that you have an agenda to push.

I will describe the warming cycle that applies to the mid latitudes in the southern hemisphere but before I do let me suggest that these latitudes are very important to the global heat budget because water absorbs energy and acts like a battery and these latitudes are almost an uninterrupted sweep of water: When surface pressure falls at the pole it is accompanied by a warming of the stratosphere due to a build up in ozone. The falling pressure at the pole induces an enhanced flow of warm air from the equator.  Cape Leeuwin then warms in the middle of winter because the air comes from a warm place. At the same time more ozone descends in the mid latitude high pressure cells. Ozone warms by absorbing infrared. The warming of the air reduces cloud cover allowing extra solar radiation to reach the surface. In meteorological terms there is an increase in geopotential height as the atmospheric column warms, a reduction in cloud cover, that you could never directly measure, but you can infer the fact due to the fact that the surface warms. The cooling cycle is the reverse. It starts with a reduction in the ozone content of the air in high latitudes and rising surface pressure in the mid latitudes as polar cyclone activity falls away. Increased cloud cover cools the mid latitudes and cold air from the south finds its way more frequently into the mid altitudes.

The last seventy years has brought a secular decline in surface pressure in high latitudes and an increase in surface pressure in the mid and low latitudes as is apparent in figure 3. Nowhere is surface pressure higher than in the 30-40°  south latitude. The latitude of Cape Leeuwin  is 34° 34′ south. This latitude is home territory for a travelling band of enormous high  pressure cells of relatively cloud free air. When pressure increases cloud cover falls away.

Fig. 3 Evolution of sea level atmospheric pressure in the southern hemisphere since 1948.

The seventy year increase in surface pressure and the parallel increase in sea surface temperature in the low and mid latitudes of the southern hemisphere is documented in figure 4

SST and Surface pressure 1
Fig. 4

Figure 5 reveals that surface pressure at 40-50° south has risen very little while surface pressure at 50-60° and 60-70° south latitude has declined strongly. That is a function of relative area. Not shown is surface pressure over the polar cap that closely follows the trends at 60-70° south.

Fig. 5

Notice that sea surface temperature rises and falls with  surface pressure throughout. This relationship is good for change in both directions in both the short and the long term. Notice the marked discontinuity in surface temperature at 60-70° south after 1976.

Naturally, the temperature increase across the latitude bands is uneven. The largest whole of period variation of 2°C is seen at 60-70° of latitude due to the increased incidence of warm north westerly winds with an abrupt shift between 1976 and 1978. The more or less parallel behaviour in the curves since that time is what we observe in mid and high altitudes, a classic cloud cover/wind direction response that occurs on short term like daily and monthly time scales, and also long term, annual, decadal and longer time scales. This response to the ozone content of the atmosphere drives short term change like that observed in figure 2 and long term change that I will document in the next post that will be devoted to one hundred and six years of data from Cape Leeuwin a treasure trove of  temperature information due to the diligence of lighthouse keepers in patiently recording the minimum and the maximum temperature every day, except on those few days where, unaccountably, they didn’t.

The next largest variation in temperature  is seen in the tropics where variation in the intake of cold waters from high altitudes gives rise to big variations in sea surface temperature that are unrelated to cloud (very little anytime) or winds (very light). The next largest variation is in the latitude of Cape Leeuwin at 30-40° south where the  variation is 0.97°C. This core region for travelling anticyclones of descending air. These HIGHS are greatly susceptible to variations in geopotential height that proceed in concert with surface temperature. This is documented in figures 6 and 7.  Increased geopotential height always brings warming.  The contrast in temperature according to wind direction is less here than in high latitudes adjacent to the Antarctic ice cap. It is safe to conclude that the response of surface temperature to increased geopotential height in low and mid latitudes is chiefly due to a change in cloud cover.

SST and GPH low
Fig 6
SST and GPH high
Fig 7

In examining this data one must remember that geopotential height is simply the height of a pressure surface. For example the 500 hPa  pressure level is found on the average at 5500 metres above sea level. When the air below that pressure level is warmer, geopotential heights will exceed 5500 metres and the warmer the atmospheric column the higher one has to go to get to the pressure surface. Heights change on daily and weekly time scales and are clearly associated with change in surface temperature and cloud cover. High heights are associated with high pressure anticyclones that bring fine sunny weather. At Cape Leeuwin low heights are associated with polar cyclones, high winds, cloud streaming in from the north west and frontal rainfall. The latter is the winter pattern and the former is the summer pattern.

There is also a close relationship between air temperature and the geopotential height at particular pressure levels as we see in Fig 9 and 10. In these figures we are looking at  heights at the 200 hPa level where the presence of ozone is associated with Jet stream activity. When heights vary at 200 hPa they  vary in the same direction at 500 hPa and 700 hPa because in these high pressure cells the air constantly descends. Cloud can be found at all levels, especially in the early part of the day. Clouds that exist as multi branching crystals of ice  have a relatively large surface area are highly reflective.

Temp and GPH low
Fig 9
Temp and GPH 2
Fig 10

Notice the overt expression of the 1976 climate shift between 15° south and 40° south where anticyclones circulate. This change is expressed as the jump in sea surface temperatures in the tropics as seen across the latitude bands in figure 6 and even more so at 60-70° of latitude in figure 7 where change in the wind direction is associated with a large change in surface temperature.

Notice also the strong drop in surface pressure at 50-60° south in the 1990’s that is associated with a fall in geopotential heights and also sea surface temperature.

What is described here is not new to ‘climate science’ as it existed fifty years ago. But most of the cohort of scientists that learned their trade in the satellite age will be unfamiliar with this train of thought.

Edward N Lorenz of the Massachusetts Institute of Technology back in 1950 published an article entitled  ‘The Northern Hemisphere Sea-level Pressure Profile’ and the abstract reads as follows:

The variations of five-day mean sea-level pressure, averaged about selected latitude circles in the northern hemisphere, and the variations of differences between five-day mean pressures at selected pairs of latitudes are examined statistically. The northern hemisphere is found to contain two homogeneous zones, one in the polar regions and one in the subtropics, such that pressures in one zone tend to be correlated positively with other pressures in the same zone and negatively with pressures in the other zone. Considerable difference is found between the seasonal and the irregular pressure-variations which result from mass transport across the equator, but the seasonal and the irregular variations of pressure differences resemble each other closely, as do the seasonal and the irregular pressure-variations which result from rearrangements of mass within the northern hemisphere. The most important rearrangements appear to consist of shifts of mass from one homogeneous zone to the other. These shifts seem to be essentially the same as fluctuations between high-index and low-index patterns. The study thus supports previous conclusions that such fluctuations form the principal variations of the general circulation, and also shows that, except at low latitudes, the seasonal pressure-variations are essentially fluctuations of this sort. The possibility that the seasonal and the irregular variations have similar ultimate or immediate causes is considered. 

Prior to 1979 when satellites were used to obtain data for the entire globe very little was known about the Southern Hemisphere where the most powerful driver of the atmospheric circulation is to be found. Although the Arctic Oscillation had been well documented the Antarctic Oscillation had not. Lorenz did not have the data at his disposal. Today we do. But, nobody is looking!

At one time people were aware that the surface pressure relationship between the mid and the high latitudes changed over time. Nobody knew why. Some canny researchers documented a correlation with geomagnetic activity implicating  the solar wind but the  actual mechanism  eluded them.

Gordon Dobson’s students explored this issue as soon as they had a single years data for total column ozone as he recalled in 1968 in his lecture ‘Forty Years Research on Atmospheric Ozone at Oxford: a History’, in these words:

Chree, using the first year’s results at Oxford had shown that there appeared to be a connection between magnetic activity and the amount of ozone, the amount of ozone being greater on magnetically disturbed days. Lawrence used the Oxford ozone values for 1926 and 1927 and in each year found the same relation as Chree had done. 

Early observers of ‘sudden stratospheric warmings’ had a suspicion that the phenomena were somehow connected with the sun. Researchers like Van Loon and Labiske pointed out that the solar cycle was clearly associated with aspects of the behaviour of the stratosphere.

But these lines of investigation became matters for the fringe dwellers in the atmsopheric sciences, the sort of people who don’t get invited to dinner parties, when Houghton took over from Dobson at Oxford , a mathematician and a physicist and a devotee of the notion that the carbon dioxide content of the atmosphere governed near surface temperature. At that point climate science fell into a hole of superstition and conviction based not on observation but ‘belief’. Climate science morphed into a religion. Houghton went on to chair the IPCCC body responsible for linking the activities of man with climbing surface temperature. Naturally at that point climate science then began to attract a lot of interest and funding, particularly in the United States where NASA under James Hansen saw the opportunity to create a role for itself in keeping an eye on what was happening. The time of the self funded gentleman scholar, like Dobson was over the time for proselytisers had arrived and the gravy train was immense. Even Australia’s CSIRO had a cohort of more than a hundred scientists working on the problem.

To this day there is no appreciation of the origin of the circumpolar trough of very low surface pressure that surrounds Antarctica.  There is no appreciation of the role of ozone in creating that trough or its role in driving high wind speeds in that part of the upper troposphere that overlaps with the lower stratosphere, the origin of upper air troughs, no appreciation of how these troughs propagate to to surface to initiate a ‘cold core’ polar cyclone. Where ignorance and superstition rule the day there can be no appreciation of the role of the polar atmosphere in driving the entire circulation, the atmosphere super-rotating about the planet in the same direction as the planet spins but faster at higher latitudes and altitudes, fastest at the point where the atmosphere begins to conduct electricity (although it does so all the way to the surface) where it dances to the tune of the solar wind. The notion that the Earth exists in an interplanetary environment held in ordered embrace by  electromagnetic fields where the atmosphere is the outer mobile skin that is first  affected by those forces and so driven to rotate and thereby to some extent dragging the Earth with it, the whole apparatus working like clockwork that is forever wound up by the thermonuclear furnace at its very core….all thoughts of this nature are now anathema.

One could give most of the climate scientists trained since the start of the satellite age free membership of the Flat Earth Society. They would fit in very nicely.


Coffs long
Fig 11 Coffs Harbour 20 years minimum daily temperature

Coffs Harbour is 3° of latitude closer to the equator than Cape Leeuwin. This coastal town is subtropical and is the home of the Big Banana. It experiences a 12°C range in its minimum  as against 8°C at Cape Leeuwin. Cold air flows off the continent in winter driving the minimum lower. The other main driver of local temperature is the temperature of the  ocean waters flowing southwards down the coast. Warm water is present in winter in El Nino years due to the build up of warmth across the tropics and the anticlockwise rotation of the Pacific Ocean. It is in winter that the differential pressure driving the westerlies of the southern hemisphere is  at its maximum speeding the flow of the Antarctic circumpolar current that flows northwards towards the equator on the eastern sides of the Ocean basins and southwards on the western sides of the ocean basin. In this circumstance one would expect change in the winter minimum at Coffs simply because the winds that drive the currents blow harder in winter. I refer of course to the roaring forties the furious fifties and the screaming sixties.

The dotted lines at  the limits of the range are horizontal. Judged by eye, they indicate no warming or cooling.  The trend calculated by XL descends.

Nowhere in the course of this analysis have I referred to carbon dioxide in the air, a matter  that is irrelevant to atmospheric dynamics and the course of change in surface temperature. In the next chapter I look at 106 years of data from Cape Leeuwin that is as representative of conditions in the Southern Indian Ocean, as you are likely to find in the data from a single weather station..



Fig. 1 Sea surface atmospheric pressure in January Source here

Even in the height of summer we see a marked trough in surface pressure on the margins of Antarctica, a product of polar cyclone activity driven by differences in the ozone content of the air and resulting differences in air density. Of course, the contrast  between the coldness of the ice bound continent and air from the mid latitudes also helps but at 200 hPa where these cyclones are generated the contrasts seen at the surface are less apparent. Surface contrasts probably assist in allowing the upper air troughs to propagate to the surface but where these contrasts don’t exist as in Arctic summer the propagation from upper air troughs to the surface to create a polar cyclone still occurs.

January pressure
Fig 2

In winter atmospheric pressure increases in the mid latitudes of the southern hemisphere increasing the differential pressure between the mid latitudes and 60-70° south. Surface pressure over Antarctica hits a planetary maximum.

July pressure
Fig. 3  Source of data for FIgs 2 and 3  here:

Figures 2 and 3 show the swings in pressure that are part of the annual cycle and the evolution of pressure over time. Mainstream climate science (is there any other) has yet to realise the importance, let alone account for the cause of that massive deficit in surface pressure in the ocean about the margins of Antarctica. ‘Climate science’ is yet to become aware  of the cumulative effect of the decadal slips in surface pressure and is incapable of making the connection with the ‘annular modes phenomenon’ or working out that the atmosphere is driven from the poles rather than the equator, let alone working out the mechanisms involved.in change. Perhaps this is because the bulk of the land mass and the population of the globe together with most of the money is in the northern hemisphere and perhaps because the Earth is round the incumbents can not see over the equatorial horizon?


SLP 80-90S by month
Fig. 4 Source of data here.

In FIG 4 the year to year variability is perhaps due to change in the rate of intake of mesospheric air into the stratosphere as it modulates the partial pressure of ozone above the 300 hPa pressure level.  The change in surface pressure  is greatest in Antarctica but it  impacts the global atmosphere from pole to pole. The southern hemisphere vortex is most influential in determining the ozone content of the air between June and November and the northern vortex between November and April.

AO and AAO
Fig 5 Source of data here.

The Arctic Oscillation and the Antarctic Oscillation indices are proxies for surface pressure over the pole. As they fall, we know that surface pressure rises over the pole. We see in fig. 5 above that a rise in the AAO, signalling a fall in surface pressure in the Antarctic forces an increase in surface pressure in the Arctic between June and November whereas the weaker, poorly structured and migratory northern vortex seems to be incapable of the same performance when it is active in northern winter. Perhaps our measurement  settings are not capturing it adequately.

The replacement of low ozone content air with high ozone content air consequent on a stalling of the intake of mesospheric air brings an increase in the temperature of the stratosphere. The greater the elevation the greater is the increase in temperature, a natural product of the fact that ozone is the agent of convection and it is ozone rich air that is lifted to the limits of the atmosphere.   This amplified response is documented at 80-90° south latitude in figure 6 below.

T of Sth Strat at 80-90S Lat
Fig 6 Source of data here.

Plainly, the largest response to an increasing presence of ozone is at the highest elevations. There has been a fundamental change in the temperature profile over the polar cap with a massive shift  from 1976 to 1978. Note that prior to this date the temperature at 10 hPa was little different to that at 200 hPa. The 200 hPa level is Jet stream altitude.What happens at 200 hPa determines the synoptic situation and is reflected at lower altitudes albeit, softened and smoothed due to the fact that not all activity at 250 hPa propagates all the way to the surface. Upper level troughs are cyclones that are insufficiently strong to  propagate all the way to the surface.But the point to be aware of is that the temperature profile between 200 hPa and 10 hPa is fundamental to the dynamics determining the movement of the atmosphere over the pole that relates to the timing of the final warming.


Another way to assess the impact on the Antarctic stratosphere is via a whole of period assessment of temperature variability at 10 hPa according to the month of the year. To examine this each months temperature is ordered from highest to lowest regardless of the year attached to the data and the difference between the highest and lowest is derived. That difference is graphed In Fig. 7

Variability in 10hPa temp by latitude
Fig 7 Source of data here.

It is plain from  Fig 7 that in the period between 1948 and 2015 temperature variability in high southern latitudes is greatest between July and October. At lower latitudes variability is strongest in June or at the start of the year. The skew towards October reflects the impact of a developing ozone hole below 50 hPa that is forced by the intake of troposphere air containing the ozone destroyer, NOx that is drawn in laterally between 100 hPa  and 50 hPa like a gradually tightening hangman’s noose that by September occupies the entire polar cap. Very cold air drawn in from the equatorial upper stratosphere is as cold as air from the mesosphere but it has more NOx, a catalyst for the destruction of ozone. This produces a severe contrast in ozone partial pressure and air density across the vortex, generates intense polar cyclone activity and drives surface pressure at 60-70° south to its annual minimum when the hole is fully established.

the ozone hole
Fig 8 Source of data here

Fig. 8 shows NOx at 50 hPa . By 15th October 2015 NOx has destroyed all ozone between 100 hPa and 50 hPa as we see at left in Fig 9 below in terms of the distribution of ozone. The light blue line defines the position of the vortex at 50 hPa.

12th Oct
Fig 9 Source of data at left and right 

In  Fig 9,  above at right, the dotted black line represents  ozone prior to the establishment of the hole while the purple line shows the temperature profile at that time. The red line shows that temperature increases as the hole establishes in stark contrast with the narrative of those who promote the story that man is responsible for the hole, a natural feature of the polar atmosphere in spring. Big Green prefers ‘unnatural’ and it would muddy the narrative if they had to admit that the hole is a natural consequence of atmospheric dynamics.

The contrast between cold air devoid of ozone and warm air from the mid latitudes that is rich in ozone at 60° south seen in figure 9 at left drives intense polar cyclone activity giving rise to a springtime minimum in surface atmospheric pressure as seen in figure 10. It was there in 1948 but more so in November. As surface pressure has fallen and ozone partial pressure has increased the minimum is a month earlier.

SLP 60-70°S
Fig. 10 Source of data here.

The winter maximum in surface pressure seen in Fig 10 now occurs earlier than it did in 1948.

Below we see that the climate shift of 1976-8 shows up in the comparison between sea surface temperature and the temperature of the air 200 hPa (where ozone warms the air) at 25-35° south latitude. This represents enhanced ozone propagating across the latitude bands at the time of the 1976-8 climate shift, a shift that simultaneously intensified the Aleutian low in the North Pacific, the dominant low pressure, ozone rich area in the northern hemisphere with knock on effects across the Pacific and North America.

Fig 10 Source of data here

The increase in the temperature at 200 hPa produces an increase in geopotential height. There is a well established relationship between GPH and surface temperature as acknowledged and demonstrated in the paragraph below from the US National Oceanic and Atmospheric Administration under the heading ‘Temperatures’. What a title!

NOAA statement

In this way the ozone content of the atmosphere is linked to the synoptic situation, the generation of the jet stream, upper level troughs and polar cyclones. Polar cyclones are the most vigorous and influential elements in the circulation of the atmosphere and the prime determinant of the rate of energy transfer from torrid equatorial to frigid high latitudes because they determine the pressure gradient between the equator and the pole. The warm moist westerly winds emanating from tropical rain forests pass by the high pressure systems of the mid altitudes and drive pole-wards warming the surface and giving rise to precipitation in ‘fronts’.

If the jet stream loops towards the equator cold dry polar winds sweeps equator-wards bringing near freezing conditions to mid and even low latitudes. Orange Orchards in subtropical Florida can be frosted. Cold Antarctic Air has been known to sweep northwards into Brazil. If polar atmospheric pressure increases the mid latitudes cool due to this influence and also due to increased cloud cover under high pressure systems as geopotential heights fall away with the ozone content of the air.

The progressive loss of atmospheric mass in high southern latitudes over the last seventy years has added mass to the mid altitudes and enhanced the westerly wind flow while opening up the sky to admit more solar radiation thereby warming the oceans. The result has been a marked warming of the air in high southern latitudes centred on those months where this natural variability occurs, primarily between Jun and the ozone hole months of the Antarctic springtime. See Fig 11 below.

A peculiarity  in the Antarctic record is the cooling experienced in summer over the last seventy years. The Arctic forces atmospheric mass into  high southern latitudes as it becomes ozone-active in the months November through to February keeping the westerlies at bay in the summer season giving rise to cooling in high southern latitudes.

Fig 11 Source of data here


SLP Antarctica
Fi 12 source of pressure data here

Sunspot numbers: Source: WDC-SILSO, Royal Observatory of Belgium, Brussels


The decline of surface pressure at 80-90° south latitude is punctuated with oscillations between regimes of relatively high surface pressure that are on average about 3.5 years apart with twenty such occurrences in the last sixty nine years and an equivalent number of periods of low surface pressure. The amplitude of the swings varies little within a solar cycle but secular change seems to occur between solar cycles. Change points seem to be associated with solar minimum.

If we now superimpose the data for surface pressure  in the high Arctic we have Fig. 13:

Polar SLP
Fig 13


  • Over time we see a shift of atmospheric mass from the poles and a gain of mass in the region of the East Asian High pressure zone. In fact atmospheric mass is likely to accrue everywhere except in high latitudes above 50° where polar cyclones, energised by increase in the partial pressure of ozone force pressure reductions. This process has fundamentally changed the parameters of the climate system. Changed, not ‘warped’ because warping suggests something unnatural and change is a natural and ongoing process. The change in 1976-8 involved a marked drop in Antarctic surface pressure that forced an increase in Arctic surface pressure regardless of the increase in global ozone at that time. The change in surface pressure has been continuous and  frequently abrupt and in particular either side of the relatively spotless cycle 20. There is a change of slope between 21 and 22 that is common to both hemispheres.
  • The evolution of surface pressure is characteristically different in different solar cycles
  • In solar cycle 18 Antarctic atmospheric pressure is superior to that in the Arctic. This superiority disappears in solar cycle 19, the strongest of recent times.
  • The very strong solar cycle 19 saw a steep fall in atmospheric pressure over Antarctica and also over East Asia but a compensating increase in pressure in the Arctic.
  •  The weak solar cycle 20 that nevertheless exhibited strong solar wind activity, saw a fall in atmospheric pressure at the poles that proceeded ‘hand in hand’  and a strong compensatory increase in surface pressure over the Eurasian continent.
  • The climate shift of 1976-8 involved a departure from the norm of the previous solar cycle 19 in that extreme falls in atmospheric pressure over Antarctica produced short term mirror image increases in Arctic surface pressure. Antarctic pressure still declined at much the same rate as it had over cycle 20 prior to the climate shift of 1976-8 .
  • Cycle 22 sees a recovery in Antarctic pressure and a compensatory collapse in Arctic pressure now establishing at the lowest level seen in the entire 69 year period bringing on the period of strong  advance  in Arctic temperature and loss of sea ice.
  • The onset of further declines in Antarctic pressure in cycle 23 allowed a recovery in Arctic pressure that, despite stepping to a higher level at the start of the cycle, declined over the period. Mirror image effects are again apparent.
  • Cycle 24 brings a brief recovery in Antarctic pressure at the expense of the Arctic where the peaks decline quickly as successive minimums in Antarctic  pressure (except the last) are higher than the previous minimum.
  •  After solar maximum in cycle 24 the decline in surface pressure in Antarctica is spectacular involving  greatly enhanced polar cyclone activity  perhaps due to enhanced ozone production due to  increased  cosmic ray activity as solar cycle 24  enters the decline phase. Reduced sunspot and flare activity  is responsible for a very compact atmosphere that may react more vigorously to the solar wind.
  • The peak in Eurasian surface pressure occurred about 1998 and a slow decline appears to have set in.

Generalising we can say that surface pressure and surface temperature appears to be linked to solar activity but in a fashion that is completely different to the narrative that insists that ‘total solar irradiance’ is the the only factor of importance. Rather, the driver of natural change in climate  works by changing the planetary winds and cloud cover via polar atmospheric dynamics that are closely linked to the flux in the ozone content of the air. Since 1978 the swings in surface pressure in Antarctica have been vigorous suggesting that a more compact atmosphere reacts more strongly to change in the solar wind and that cosmic rays that are enhanced in a regime of low solar activity may be more influential in ionising the polar atmosphere allowing the generation of ozone and especially so  during periods where the intake of mesospheric air is disrupted and the polar stratosphere warms. It is apparent that the ozone content of the air in high latitudes peaks in late winter/spring  even though the lifetime of ozone in the atmosphere is progressively shortened due to the increase in the incidence of destructive UVB radiation as the sun rises higher in the sky and the earths orbit takes it closer to the sun. Something has to account for that extra ozone. Climate science does not even pose the question, let alone answer it.

The ‘canary in the coalmine’ that indicates the change in the forces at work can be seen in extreme surface temperature variability in February and July. These months exhibit the greatest differences in terms of the whole of period  minimum and whole of period maximum in surface pressure as seen below. It is the months of January and July that exhibit the greatest variability in surface temperature. We see that in the sphere of natural climate change, surface pressure and surface temperature are inextricably linked. But, then again we always knew that by looking at the weather from week to week.

SLP varn Antarctica
Fig 14

The evolution of Antarctic surface pressure by the month is explored in the third diagram in this chapter. It appears that the system is at a turning point. Eight of the twelve months of the year, including the critical months under the control of the Antarctic and later the Arctic, from August through to February  show signs of a rise in surface atmospheric pressure. If this continues and the  ozone content of the global atmosphere continues to fall, and with it the temperature of the upper stratosphere we might sometime witness a reversal of the climate shift of 1976-8.

TEST QUESTIONS related to Fig.15: Have you understood this chapter?

Why is it that the Antarctic stratosphere above 150 hPa warms faster than the  atmosphere below 150 hPa in spring?

Why do we see the abrupt change in slope in the temperature of the air above 70 hPa in November?

Why does temperature between the surface  and 400 hPa decline at an invariable rate between April and August while the atmosphere above becomes increasingly colder?

What is the temperature at the tropopause in August and at what elevation is it located?

Fig. 15


POSTSCRIPT:   For the convenience of the reader I list the chapters in this treatise in order to provide an idea of the scope of the work and the manner of its development. At the end is a list of chapters currently in preparation.


How the Earth warms and cools in the short term….200 years or so…the De Vries cycle

Links to chapters 1-38

  1. HOW DO WE KNOW THINGS Surface temperature is intimately tied to the global circulation of the air and the distribution of cloud.Ozone is inextricably linked to surface pressure and cloud. The key to unlocking the cause of climate change lies in observation.
  2. ASSESSING CLIMATE CHANGE IN YOUR OWN HABITAT On accessing and manipulating data to trace the way climate changes regionally. It is essential to understand the manner in which the globe warms and cools if one is to correctly diagnose the cause.
  3. HOW THE EARTH WARMS AND COOLS NATURALLY It is observed that the surface warms when geopotential height increases. This chapter answers the question why geopotential height increases.
  4. THE GEOGRAPHY OF THE STRATOSPHERE  Answers the question ‘at what elevation does the incidence of ozone cut in as a means for heating the atmosphere thereby creating what has been erroneously described the ‘stratosphere’. In winter its anything but stratified. It should be renamed ‘The Startosphere’.
  5. THE ENIGMA OF THE COLD CORE POLAR CYCLONE High latitude cyclones are the most vigorous circulations on the planet. At the surface they have a cold core. Their warm core is in the upper troposphere where the ozone impinges. No cyclone can form without a warm core.
  6. THE POVERTY OF CLIMATOLOGY Geopotential height at 200 and 500 hPa vary together in the extra-tropical latitudes. Furthermore, the increase in geopotential height that accompanies the surface pressure change is accompanied by a loss of cloud cover. All ultimately relate to the changing flux of ozone in the upper half of the atmospheric column in high latitudes.
  7. SURFACE TEMPERATURE EVOLVES DIFFERENTLY ACCORDING TO LATITUDE Surface temperature change is a two way process that occurs at particular times of the year.
  8. VOLATILITY IN TEMPERATURE. Temperature change is a winter phenomenon, increasing in amplitude towards the poles
  9. MANKIND IN A CLOUD OF CONFUSION Our understanding of the atmosphere is primitive.
  10. MANKIND ENCOUNTERS THE STRATOSPHERE. The origin of the stratosphere was a mystery back in 1890 and we still haven’t got it right.
  11. POPULATION, SCARCITY AND THE ORGANISATION OF SOCIETY. A dispassionate view of the Earth, considering its ability to promote plant life, sees the planet as distinctly cooler than is desirable.
  12. VARIATION IN ENERGY INPUT DUE TO CLOUD COVER. The atmosphere mediates the flow of solar energy to the surface of the planet via change in cloud cover. How could this be overlooked?
  13. THE PROCESSES BEHIND FLUX IN CLOUD COVER. A discussion of some of the intricacies involved in the relationship between surface pressure, cloud cover and the uptake of energy by the Earth system.
  14. ORGANIC CLIMATE CHANGE A discussion of the big picture that focuses on the natural sources of climate change.
  15. SCIENCE VERSUS PROPAGANDA The scare campaign about ‘global warming’ or ‘climate change’ is not based on science. Science demands observation and logic.  There is a ‘disconnect’ between observed change and the hypothesis put forward to explain it. One cannot ‘do science’ in the absence of accurate observation. What is being promoted as ‘Climate Science’ by the UNIPCC fails at the most basic level.
  16. ON BEING RELEVANT AND LOGICAL Climate scientists freely admit they do not know what lies behind surface temperature change that is natural in origin that expresses itself regionally and with large differences according to latitude i.e. the annular modes (Arctic and Antarctic Oscillations). In that circumstance it is nonsense to attribute change to the influence of man. There is an error in logic. But, its wilful.
  17. WHY IS THE STRATOSPHERE WARM Is the warmth of the stratosphere due to the interception of ultraviolet radiation or heating due to the interception of long wave radiation from the Earth? This issue is fundamental. Observation provides the answer.
  18. THE OZONE PULSE, SURFACE PRESSURE AND WIND The direction and intensity of the wind and the distribution of ozone is closely related. This chapter gives an introduction to the nature and origin of the annular modes phenomenon.
  19. SHIFT IN ATMOSPHERIC MASS AS A RESULT OF POLAR CYCLONE ACTIVITY The distribution of ozone maps surface pressure. When the partial pressure of ozone builds pressure falls locally and is enhanced elsewhere.
  20. THE DISTRIBUTION OF ATMOSPHERIC MASS CHANGES IN A SYSTEMATIC FASHION OVER TIME Surface pressure changes on long time schedules. UNIPCC climate science is oblivious to these changes and the consequences attached to the change.
  21. THE WEATHER SPHERE-POWERING THE WINDS. The strongest winds can be found at the overlapping interface of the troposphere and the stratosphere and we haven’t yet worked out why or what it means when change occurs at that interface.
  22. ANTARCTICA: THE CIRCULATION OF THE AIR IN AUGUST An introduction to the structure and dynamics of the atmosphere in high latitudes
  23. THE DEARLY BELOVED ANTARCTIC OZONE HOLE, A FUNCTION OF ATMOSPHERIC DYNAMICS. The celebrated ‘hole’ is actually a natural feature of the Antarctic atmosphere in spring and has always been so. It’s dictated by geography and process during the final warming.
  24. SPRINGTIME IN THE STRATOSPHERE More detail on the natural processes responsible for the ozone hole.
  25. WHERE IS OZONE? PART 1 IONISATION. The structure of the upper atmosphere is dictated by process. Hand waving is no substitute for observation.
  26. WHERE IS OZONE PART 2 EROSION More on the processes responsible for the structure of the atmosphere in high latitudes and in particular the manner in which tongues of air of tropical origin are drawn into the polar circulation.
  27. COSMIC RAYS, OZONE AND THE GEOPOTENTIAL HEIGHT RESPONSE Observation and logic suggest that both the solar wind and cosmic rays are independently influential in determining the partial pressure of ozone in high latitudes. No other possibility is remotely plausible.
  28. MISREPRESENTING THE TRUTH Ozone, not UV radiation warms the upper air in winter
  29. THE PURPOSE OF SCIENTISTS History is re-interpreted continuously to suit the purposes of elites. Science is moulded in that same way by virtue of the fact that the elites hold the purse strings. All is ‘spin’.
  30. THE CLIMATE SHIFT OF 1976-1980. The nitty gritty of how climate changes together with the basics of a theory that can explain the natural modes of variation. Observation and theory brought together in a manner that stands the test of common sense.
  31. DIFFERENCES BETWEEN THE HEMISPHERES: THE ORIGIN OF STRATOSPHERIC WARMINGS. Unfortunately climate science has a lot to learn. It has to begin with observation rather than mathematical abstractions. In fact, it’s best to keep the mathematicians at arms length.
  32. THE CLIMATE ENGINE THAT IS THE OZONOSPHERE . The atmosphere re-defined to take account of the critical processes that determine its movements and thereby the equator to pole temperature gradient. Takes a close look at processes inside and outside the winter time polar vortex. The system is the product of the distribution of ozone.
  33. SURFACE PRESSURE AND SUNSPOT CYCLES .  This chapter looks at the evolution of surface pressure and how it relates to solar activity. It explores the nature of the interaction between the atmosphere at the northern and southern poles.
  34. WEATHER ORIGINATES IN THE OZONOSPHERE Takes the focus to a regional and local perspective to answer the question as to why the mid latitudes of the southern hemisphere have been colder in winter of 2016.
  35. JET STREAMS Compares and contrasts two quite different explanations for the strong winds that manifest where the troposphere and the stratosphere overlap.
  36. JET STREAMS AND CLIMATE CHANGE Looks at some great work that measures the ozone content of the air across the northern hemisphere and sets up a classification in a novel fashion, by zone of commonality rather than latitude. Relates the distribution of ozone to the occurrence of the subtropical and polar jet streams.  Zones of surprisingly uniform ozone content lie between the jets, and both pole-wards and equator-wards of the jets. Tropopause height steps down at the latitude of the jets creating marked contrasts in atmospheric density. This is a very useful and rock solid survey of great importance given the relationship between ozone and surface pressure.
  37. THE HISTORY OF THE ATMOSPHERE IN TERMS OF UPPER AIR TEMPERATURE An examination of temperature dynamics at the 10 hPa pressure surface over the poles.Critical to understanding the evolution of climate over the period of record.
  38. E.N.S.O. RE-INTERPRETED. The origin of the El Nino Southern Oscillation phenomenon and why the matter is of little consequence.


Here is how would I explain the Earth’s natural modes of climate change to a child!

Let us consider the Earth as a car. We are at some latitude (like being in the back or the front seat of a car). Let’s imagine we have the heater in the front of the car and a vent over the back seat. You can open and close the vent and turn it to the front to scoop in air or to the back and suck air out of the car. So, the cold air from the vent can blow straight down the back of your neck or you can turn the vent around so that it sucks air out of the car so that the warm air from the engine travels to the back of the car.

Ozone heats the air in winter creating polar cyclones that lower surface pressure at the pole attracting a flow of air from the equator. More ozone = lower surface pressure in high latitudes = wind blows more often from the equator. Less ozone= higher surface pressure at the pole= wind from equator does not come. Instead, a cold wind comes from the pole similar to what would happen if you turned the vent in the car roof so it faced forwards.

The second way in which ozone changes surface temperature is by changing cloud cover. Because ozone is mainly present in the upper air and it ascends strongly at the poles in winter it has to come down somewhere else. Where it  descends it warms the air and evaporates cloud letting the sun shine through to be absorbed by the ocean that acts like a battery because it stores energy.  Full dense cloud  curtails solar radiation by as much as 90%.

The climate varies by warming and cooling  in winter. It is in winter that we see the big changes in 1. Polar surface pressure, 2. The ozone content of the air 3. The direction of the wind and hence  the temperature at the surface.

Change can be two way, both warming and cooling.

Ozone is inextricably linked to surface pressure. The key to unlocking the cause of climate change lies in working out what can change the ozone content of the air near the poles in winter.



Dr Tony Phillips of NASA maintains that “Understanding the sun-climate connection requires a breadth of expertise in fields such as plasma physics, solar activity, atmospheric chemistry and fluid dynamics, energetic particle physics, and even terrestrial history. No single researcher has the full range of knowledge required to solve the problem”  http://science.nasa.gov/science-news/science-at-nasa/2013/08jan_sunclimate/

In fact it requires the efforts of a generalist, a synthesiser, like a bird that gathers a diversity of material to make its nest, to put this story together.


Nitrogen and Oxygen together represent 99% of the volume of the atmosphere.  Neither ozone at up to 30 ppm nor CO2 at 400 part per million are in the list of the top eight atmospheric gases.From Wikipedia we have:


The wave lengths emitted by the Earth are centred about the 9-10 um where ozone absorbs.  It also absorbs at 5um. Because ozone, like water vapour is not uniformly distributed it gives rise to differences in air temperature and density. We are familiar with the manner in which the release of latent heat energises tropical cyclones. Climate science is blind to the manner in which ozone energises the atmosphere despite the realisation more than 100 years ago that total column ozone maps surface pressure. Carbon dioxide is another potent absorber of long wave radiation from the Earth but it is almost uniformly distributed. As such it plays no part in generating winds. It is differences in air density in the horizontal domain that drives the winds. The strongest winds are to be  found above the tropopause due to marked differences in the ozone content of the air in the horizontal domain between the 300 hPa and the 50 hPa pressure levels.

The movement of the air is influential in determining the equator to pole temperature gradient and cloud cover. High pressure cells are relatively cloud free environments. Anything that increases surface pressure in the mid latitudes expands the relatively cloud free zone and warms the planet.

In all latitude bands surface temperature variation is greatest in the winter and the range of variation increases from the equator to the poles. This points to a polar dynamic as being  responsible for natural climate variation. In the waxing and waning of polar cyclone strength according to the ozone content of the air we have a dynamic that can produce shifts in atmospheric mass. Shifts in mass are responsible for change in the planetary winds. This alone will change surface temperature.

It is vital therefore that we have a good understanding of how ozone comes to be, its distribution and the circumstances that will change its distribution and partial pressure.


Ionization, photolysis, photo-dissociation and photo-decomposition and are all terms that are used to indicate a chemical reaction where electrons are dislodged from molecules by photons. How far this process extends into the lower atmosphere is a matter of interest.

A photon is a hypothetical unit of radiant energy.  Photolysis is defined as the interaction of one or more photons with one target molecule. Any photon with sufficient energy can affect the bonds of a chemical compound.  A photon’s energy relates to its wave length. Only the shorter wave lengths have the necessary energy to decompose the smallest atmospheric molecules.


Because larger atomic weight molecules are more susceptible to photolysis than smaller atomic weight molecules only the smaller atomic weight entities can maintain their integrity at the highest altitudes.

In order of increasing atomic weight we have:    Hydrogen = 2.016,    Helium = 4.002602, Methane = 16.044,   Steam = 18.02,  Nitrogen = 28.0134,  Nitric Oxide = 30.006,  Oxygen = 31.9988,  Ozone= 47.998

Since short wave radiation is progressively ‘used up’ in its passage though the atmosphere it might be expected that the ozone content of the air would increase as the rays that disassociate ozone were used up. The ozone content of the air would then increase all the way to the surface of the planet. Part 2 will explain why that is not the case. This chapter explains where ozone is to be found above the tropopause and why that is so. An understanding of this question is vital if we want to comprehend the movement of the air and the origins of natural climate change. More than 100 years ago it was observed that ozone maps surface pressure. Surface pressure variation is the essence of weather on all time scales.

UV spectrum

The ultraviolet spectrum includes wavelengths shorter than 400nm. These wave lengths can account for 8% of the energy that comes from the sun but only a fraction of that under quiet sun conditions. The power in the EUV spectrum varies tenfold over the course of a solar cycle.

It is only the very short wave radiation in the EUV spectrum, x-rays and gamma rays that is capable of disassociating nitrogen.  EUV is wholly absorbed in photolyzing oxygen and nitrogen above 80km in elevation in the ionosphere.

A wave length shorter than 240 nm is required to disassociate oxygen.

Ozone is susceptible to ultraviolet waves shorter than 320 nm.  This includes UV-C (220-290 nm) and UV-B (290-320 nm).

Wave lengths longer than 320 nm have relatively free passage through the atmosphere.  There is insufficient ozone in the southern hemisphere to screen out wave lengths in the UVB and perhaps part of the UVC.  This has important consequences for plants and animals because this radiation penetrates deeply into the cells of an organism. Human skin containing low levels of melatonin is particularly susceptible. If ones sees blood vessels below the skin, so too does UVB.

It is change in atmospheric ozone that determines the degree of penetration of short wave radiation to the surface. Cold air from high latitudes comes with more ozone aloft producing low surface pressure. When surface pressure is lower the risk of UV exposure is also lower because of the superior ozone content of the upper air. Climate change has involved a southward movement of the high pressure belts in the southern hemisphere, reduced rainfall in southern Australia and also an increase in the UV risk factor.

The UV risk factor at the surface is time of day and time of year specific and it also depends upon cloud cover. The processes of atmospheric ionisation are similarly focused on just part of the atmosphere and the intensity of the process varies according to the time of the year and the stage of the solar cycle. The diagram below is instructive in this respect.

UV risk


Australian researchers contribute to the global effort in the field of radio astronomy. The diagram reproduced below appeared in a presentation delivered in 2012 to a CAASTRO EoR Radio Astronomy workshop in Sydney by  Dr Mike Terkildsen of IPS Radio and Space Services as reported here: http://www.spaceacademy.net.au/env/spwx/raiono.htm


Note that the fall off in the electron concentration above 300km in elevation relates to the decline in the number of particles that are candidates for ionization.

I quote:  The ionosphere is what we term a weak plasma, as only one percent of the neutral atoms in the upper atmosphere are ionised. Traces of ionisation exist from about 80 km to 1000 km in altitude, with the peak ionisation occurring around an altitude of 300 km. The maximum ionisation can vary from about 1010 to 1013 electrons per cubic metre.

Ionospheric ionisation is controlled by extreme ultraviolet and soft x-ray flux emitted by the Sun. The lower regions of the ionosphere show almost exclusive solar control in that the ionisation at any time is proportional to some function of the solar zenith angle at each point as is seen below.

Vertical total electron count

Mileura is a radio observatory located in the Murchison district in Western Australia at 26° south latitude where radio wave interference is light due to remoteness from centres of population. We see the dependence of VTEC (Vertical Total Electron Count) at the Mileura observatory on time of day and the state of the solar cycle. Notice the dramatic difference between daylight and dark.  The difference between the maximum in the solar cycle and the minimum is as much as between day and night. There is a very strong impact of the angle of the sun that is reflected in the VTEC for the month of June.

This diagram helps us to understand that latitude impacts the degree of ionization of the atmosphere. Accordingly, at latitudes greater than 23° north or south the winter season will see a marked reduction in the vertical total electron count. We know that ozone partial pressure peaks in the high latitudes of the winter hemisphere. The availability of building blocks in terms of free atoms of oxygen to form ozone is least in winter. Ozone is not built in high latitudes via the dissociation of the oxygen molecule by UV light. It is transported there. The increase in the ozone content of the air in high latitudes in winter is not due to transport phenomena because the act of transport can not increase the concentration of any particular constituent. That increase in winter is due to low disassociation rates.

The altitudes where ionization maxima occur are referred to as the D, E and F regions.  The D region sees strong ionization only in daylight hours.


Some researchers refer to a lower C layer created by galactic cosmic radiation, a force that is independently capable of ionising the atmosphere that is particularly active over the poles. This activity can be monitored as a muon count. Precipitating muons penetrate to the surface and to deep underground, their incidence increasing with the temperature of the polar atmosphere.  It follows that the muon count creates a proxy record of the incidence of stratospheric warmings. Stratospheric warmings and in general the variability of the temperature of the stratosphere over the pole occur in winter where they build on a low base temperature established due to the descent of cold mesospheric air. The stratosphere warms from this low base as the tongue of very cold mesospheric air either withdraws or is displaced by ozone rich warmer air that circulates on the margins of the tongue outside what is referred to as ‘the polar vortex’. The vortex, is a rapidly circulating cone of air energised by the conjunction of cold dense air inside the vortex and ozone rich low density air outside the vortex.

Paradoxically, in the world of climate science the term ‘strong vortex’ relates to the situation where the flow of mesospheric air towards the surface is weak due to low surface pressure in the polar regions. In the Arctic, weak atmospheric pressure ensures that cold air is retained at high latitudes.  This is the positive phase of the ‘Arctic Oscillation’.

In climate science a ‘weak vortex’ refers to the situation where the AO index is negative, polar surface atmospheric pressure is high, the downdraught of mesospheric air is strong and cold air migrates into the mid latitudes. In this situation the jet stream that marks the edge of the polar vortex that in turn relates to the position of a chain of intense polar cyclones, wanders equator-wards taking with it very cold air. Is it any wonder that there is confusion about matters polar?

The notion of strong and weak vortex as described above is at odds with the circulation of the air in the stratosphere. In the stratosphere a faster zonal wind corresponds with deeper penetration of mesospheric air and weaker polar cyclone activity due to the  erosion of ozone. The result is a return of atmospheric mass to the pole from the mid latitudes and an accelerated flow of  of cold polar air to the mid latitudes. So a strong stratospheric flow is associated with coldness, not warmness. At the root of this problem is the notion that the vortex is some sort of impenetrable wall across which little mixing can occur. The reverse is actually the case because between the surface and 50 hPa polar cyclones violently mix very different atmospheric constituents from both sides of the ‘vortex’. The problem is a lack of appreciation of the motive force behind this circulation and a complete misinterpretation of its geometry. Behind that problem is the  notion that the circulation of the atmosphere is just problem in fluid dynamics where the energy to drive the system is assumed to be heating at the equator. In all other respects  it is assumed that the system is closed to external influences. Primitive thought patterns. Well, in fact that is not the case at all. All change begins in the Antarctic stratosphere. It is no accident that the entire southern hemisphere is something of an ‘ozone hole’.

Recent research (abstract below) suggests that ionisation due to cosmic rays in polar latitudes may be a pathway for the generation of ozone down to jet stream altitudes. If this is the case stratospheric warmings will be associated with the generation of ozone and the intensification of polar cyclone activity that lowers surface pressure across the entire polar cap impeding the flow of mesospheric air into the ozonosphere and, via the impact of enhanced ozone in columns of descending air in the mid latitudes, evaporating cloud and warming the surface of the planet. However, the solar wind conditions the ionosphere in such a way as to inhibit the flux of cosmic rays that reach the upper atmosphere. According to this construct the response to cosmic rays will tend to be greater at the low point of the solar cycle as the fluctuations in the solar wind are diminished at this time. There is in fact evidence in the incidence of the El Nino Southern Oscillation phenomenon that the climate system is particularly variable in terms of the distribution of atmospheric mass during solar minimums and it could be the cosmic ray mechanism that is responsible.

Cosmic rays ozone

At this point it is important to note that the cosmic ray effect is dependent upon warming of the stratosphere that is in turn dependent on surface pressure over the polar cap. It is high surface pressure in winter that drives the zonal wind in the upper stratosphere bringing that tongue of cold mesospheric air into the polar stratosphere. A change in surface pressure results in an immediate change in the temperature of the air over the polar cap conditioning the process of ionisation by cosmic rays.


The wave lengths that are capable of ionising atmospheric gases represent a tiny part of the electromagnetic spectrum emitted by the sun. The EUV itself contributes an insignificant amount to TSI, only a few mW m−2 , as compared to 1360 W m−2 , or a few parts in a million. Inevitably these very short wave lengths are exhausted in the process and largely so above 80km in elevation. But these wave lengths vary tenfold in terms of their power over the solar cycle. It follows that the state of inflation of the ionised region is a direct function of solar activity within the eleven year cycle and over the longer 100 and 200 year intervals between individual solar cycles of very low strength of the sort that the Earth is currently experiencing.

During the satellite age we have seen a marked reduction in the incidence of EUV radiation in line with reduced sunspot activity. In consequence the elevation that is required to reduce atmospheric drag on satellites is reduced and satellite life has been extended well beyond design expectations. This is a direct consequence of a reduction in the output of EUV by the sun. Over this period the concentration of ozone in the stratosphere shows no such variation. It is plain that the ozone content of the stratosphere is independent of the output of short wave radiation from the sun that is responsible for the inflation of the ionosphere.

The diagram below is included to give a sense of scale. We see that the temperature of the upper atmosphere peaks at the 1 hPa level (50 km) with 99.9% of the atmosphere below. This is just below the level where the D region of the ionosphere manifests during daylight hours (60- 75km).

The temperature of the upper air from about 7km in elevation at the poles and 15km at the equator, is conditioned by the presence of ozone that absorbs in the infrared spectrum emitted by the Earth and its atmosphere.  The decline in the temperature of the air in the mesosphere that lies between 45 and 80 kilometres in altitude relates to the declining partial pressure of ozone. The increase in the temperature of the air beyond the mesosphere relates to energy gain in the process of ionisation. But remember that only one percent of the neutral atoms in the upper atmosphere are ionised. That is 1% of the 0.01% that is present above 1 hPa. It does not take a lot of atmosphere to exhaust the incident EUV wave lengths.

T Atmos over equator


Given that the ionic population in the D region exists in the main above 50 km in elevation we can infer that ozone is created in the main in the mesosphere that represents the transient tail end of the ionosphere.  Below the mesopause the population of ions is adequate to support chance encounters between atoms and molecules of oxygen to enable the synthesis of ozone, at least in daylight hours. Here the intensity of destructive radiation is so diminished (particularly at night and at low sun angles) as to allow the large ozone molecule a life. It is then diffused or carried to lower elevations in areas of descent. It follows that the ozone content of the atmosphere below the levels where ionisation is possible is a function of atmospheric dynamics, day length, chemical interactions and the seasonal existence of relatively ‘safe zones’ in high latitudes where the atmospheric path is long and the wave lengths in the UVB and UVC spectrum are so eroded that the atmosphere offers a safe haven for ozone.

The upshot is that the stratosphere in general represents a relatively ‘safe zone’ for ozone, and particularly so in the winter hemisphere. This interpretation is consistent with the observation that the ozone content of the atmosphere varies little across the solar cycle even though EUV varies tenfold. In trying to understand the Earth system one must always remember that the Earth is an orb that rotates about the sun taking 365.25 days and spins on an axis that is inclined 23.5° off a vertical that is at right angle off the plane of its orbit. At the top of the atmosphere irradiance varies by 6% across the year due to the elliptical nature of this orbit and is greatest in January when the Earth as a whole is coolest due to increased cloud cover. This is very different situation to a plane surface that is uniformly lit from vertically above.

Between 1 hPa and the upper limits of the mesosphere at about 80 km in elevation, the temperature of the air and its ozone content descends to a minimum. This minimum is called the mesopause. Beyond the mesopause, atmospheric temperature increases in line with the excitation of the atmospheric constituents by extreme ultraviolet radiation.

It should be borne in mind that the temperature of the atmosphere that contains ozone (between the mesopause and the surface of the planet) is in part a function of the energy absorbed by ozone in the infra-red and secondly due to the energy released by the disassociation of the ozone molecule as it is ionised. However there is in practice a more  influential factor at work. The temperature of the air in the stratosphere is mostly a function of the origin of the air as it moves vertically and laterally within the stratosphere. On a spherical surface that is not uniformly lit the temperature of the air very much depends upon its origin.

The notion that the stratosphere is a relatively safe place for ozone is supported by the following observations:


It appears that 40km in elevation over India is the point at which the atmospheric profile changes. Above 40km the night time partial pressure of ozone is greater than the day time  as one would expect if the pressure of ionization during daylight hours actively depleted ozone faster than it forms up. Below 40km in elevation, daytime values are higher than night time values indicating a relatively safe environment so far as ionisation is concerned.


In the diagram below we see that at the 1 hPa pressure level there is a cyclical accumulation and dissipation of ozone over centres where surface pressure tends to be low in winter (the oceans). This convective phenomenon occurs in the lee of   the continents and in particular, in 2016, over New Zealand in winter.  This particular cycle comes and goes in the space of 9-11 days and is convective in origin.  It is erroneously attributed to ‘Planetary waves’. In fact, the annular ring of high ozone values that surrounds the pole, strengthening in winter represents air of low density that is ascending to the top of the atmosphere, or at least to a level where 99.9% of the atmospheric mass is beneath.

Planetary wave 1

In the northern hemisphere the Pacific Ocean tends to be the zone where low surface pressure promotes the accumulation and ascent of ozone rich air. The distribution of ozone at 1 hPa is seen below, across a similar cycle of convection in the northern hemisphere.

NH Ozone at 1hPa


It is suggested that the existence and persistence of ozone in the stratosphere is in the main a response to the reduced pressure of ionisation below an elevation of about 40 kilometres over the equator. In the winter hemisphere ionisation via short wave radiation from the sun is not a factor of importance allowing ozone partial pressure to build. The influence of cosmic rays may be to build ozone levels at high latitudes and particularly so during stratospheric warmings. The distribution of ozone responds also to convective processes. The temperature of the air in the stratosphere will depend in the main on its response to radiation from the Earth itself rather than the process of ionisation. Air  from the mesosphere is cooler regardless of its ozone content.  It is well observed that air moving from low to high latitudes at the 100 hPa pressure level is cooler due to its lower ozone content. The stratosphere is warmer at the poles than at the equator due to enhanced ozone content even though the amount of infrared radiation that is available to energise ozone is much reduced. This tells us that the amount of radiation available to  energise ozone is never limiting, even at night. The air at the tropical tropopause, markedly deficient in ozone, is at a similar temperature to the air in the mesosphere, about minus 85°C.

It is the exhaustion of ionising radiation above the mesopause that allows ozone partial pressure to build at lower elevations. The partial pressure of ozone can only build when the ozone molecule is free from disassociation via wave lengths that are longer than the EUV wave lengths responsible for the ionosphere. In low latitudes this may be the case at about forty kilometres in elevation and it will be higher in mid and high latitudes. The atmospheric path is long enough to filter out the wave lengths that can disassociate ozone when the sun is low in the sky. During the polar night the atmospheric path is …….. somewhere else.

Due to the minute partial pressure of ozone that rarely exceeds 30 ppm, and only in very protective environments near the poles,  the surface of the planet is never completely free of radiation at the wave lengths that can disassociate ozone. It is the paucity of ozone in the southern hemisphere that is responsible for the pressure of damaging short wave radiation at the surface. The Andes Mountains experience particularly large amounts of energetic ultraviolet radiation due to their elevation.

The dilution of ozone via the descent of mesospheric air pre-conditions the entire southern hemisphere to an ozone deficit and is responsible for the weathered, leathery, ‘Australian skin’ and by contrast the extreme levels of melatonin in the skin of Australia’s very well adapted native peoples.

Part 2 describes the forces responsible for the erosion of ozone near the surface of the planet, the highly variable height of the tropopause and its lack of clear definition when observed on short time scales. It is seen that ozone partial pressure is greatest where ozone is free from erosive influences emanating from the surface of the planet.



Ninety nine percent of the atmosphere lies within the ambit of a vigorous day’s walk, just 30 kilometres!

The atmosphere efficiently conveys heat to space via convection (transport) and radiation.  This is apparent in the 24 hour cycle of temperature as a point on the Earth’s surface alternately faces the sun and enters the night zone and the more so in inland locations where the daily range of temperature is accordingly much greater.We call this increase in the daily range of temperature the ‘continental’ effect.

In the northern hemisphere where there is a relative abundance of land the seasonal extremes are wider we have another example of the ‘continental effect’. The strong maximum in outgoing radiation in summer should promote summer warming if the atmosphere were subject to a ‘greenhouse effect’. But, consult the graph below and see that in the mid latitudes of the northern hemisphere we find that the temperature has increased mainly in spring and autumn. In high latitudes the increase in temperature has been in winter when outgoing radiation plunges to a  minimum.

Change in T in NH according to month of the year

Under an imaginary greenhouse regime the atmosphere becomes an impediment to heat transfer and we should see an increase in temperature in all seasons and in all locations just as the ocean limits the variation in temperature of proximate locations. But in fact we observe that the temperature increase that has occurred is variable according to the month of the year. This temperature increase does not tally with the mechanism that is proposed by the United Nations International Panel on Climate Change that was set up to examines man’s influence on the climate of the globe.

In cold conditions humans make sure that the air close to their skin is contained and unable to move. But, the Earth’s atmosphere is not confined in this way. Consequently it acts as a river for energy transfer from the surface to space. As a river it is perhaps the most vigorous on the planet. The ‘supposed greenhouse effect’ is no impediment to this process. Common sense dictates that a static atmosphere is required if the rate of loss of energy is to be curtailed and back radiation is to return energy to the surface via a so-called greenhouse effect. The atmosphere is anything but static. We insulate to stop the air moving. The atmosphere is air.

Plainly we must look to other modes of causation to explain the temperature increase that has been observed.


The following observations demonstrate the primacy of cloud that acts to reflect solar radiation, so determining surface temperature:

  1.   For the globe as a whole the sea is always warmer than the land and the global average for both the land and the sea is greatest in July.Global sea and air
  2.  A maximum in June/July is an anachronism. Earth is farthest from the Sun on July 4. The quotient of energy available from the sun (above cloud level) is 6% less in July than in January.

Why is the Earth warmest when it is most distant from the sun?

In northern summer the sun heats the abundant land masses and the land being opaque the surface quickly warms and with it the atmosphere.  The supply of water vapour to the atmosphere lags behind the increase in the water holding capacity of the air. There is less ocean in the northern hemisphere. In any case water is transparent and it stores energy to depth releasing it slowly. The upshot is that the heating of the atmosphere by the land rich northern hemisphere directly and dramatically reduces cloud cover.  The July maximum in global temperature is due to an increase in the diminished total of solar energy that is available in July. The amount made available at the surface is so much greater in mid year as to result in a temperature peak in mid year.

In northern autumn gathering cloud reflects more solar radiation and the globe therefore cools as its orbit takes it closer to the sun. That’s a pity because as I explained in the last post the globe as a whole is cooler than is desirable from a plant productivity point of view and all life ultimately depends on plants.


From:http://www.iac.es/adjuntos/cups/CUps2015-1.pdf we have direct measurements for Izana observatory in the Canary Islands of  the number of days where cloudiness (red and yellow) is recorded and conversely the number of days where the sky is sufficiently devoid of clouds to achieve a clear sky rating (green).  The attenuation of cloud cover in northern summer is evident.
Cloud cover Teide Observatory, Spain


From http://www.ccfg.org.uk/conferences/downloads/P_Burgess.pdf we have direct measurements of solar radiation at the surface.

Radiation as a function of time of year and cloud cover in Bedordshire

At this site in the UK cloud is responsible for the attenuation of solar radiation by a minimum of 26%  and a maximum of 90%.


Surface temperature is directly modulated by cloud cover as demonstrated in the following satellite photograph.Temp varies with cloud cover



It should be abundantly clear that it is the mediation of energy input by clouds that is the most influential determinant of surface temperature. Zones that experience high surface pressure are relatively cloud free. The essence of change in the ‘annular modes’ lies in a shift of mass from high latitudes due to ozone heating that drives down surface pressure. High southern latitudes have lost atmospheric mass for seventy years on the run. Lost mass has been distributed across the globe adding to surface pressure in those parts of the globe where increased surface pressure  is allied with relatively cloud free skies. In chapter 3 we observed that the globe warms when geopotential height increases. Geopotential height increases when surface pressure increases as the core of a high pressure cells entrains ozone from the stratosphere.


Cloud comes in all shapes, types, sizes altitudes and density and is notoriously difficult to measure.

At http://www.atmos.washington.edu/~sgw/PAPERS/2007_Land_Cloud_JClim.pdf  we have a paper documenting change in cloud cover and establishing correlations between cloud cover over Europe and the North Atlantic Oscillation, a local manifestation of the the northern annular mode.

Survey of cloud cover change


Note that in the mid latitudes in winter, cloudiness is associated with incursions of warm, moist air from the tropics promoting a positive correlation between the presence of clouds and surface temperature. The band of cloudiness formed by frontal activity occurs in the interaction zone between cold dry air of polar origin and warm air of tropical origin. People  might observe that ‘its too cold to rain’ when the air is coming from high latitudes. Alternatively they might say, they can ‘smell’ the rain coming when the air is humid and it comes from lower latitudes. Or they might say, ‘the temperature will increase when it starts to rain’.

To suggest that the positive correlation between cloud cover and temperature in winter is due to back radiation from clouds or that there is a positive causal relationship between the presence of cloud and surface temperature due to back radiation involves an error in logic. Its warmer in winter when there is cloud about  because the cloud arrives with a warmer, moister body of air that originates in tropical latitudes.  Cloud does not cause warming in winter and an opposite effect in summer. Cloud always involves an attenuation of solar radiation.


There should be no confusion as to the effect of cloud on surface temperature. To suggest that the climate is warming due to back radiation indicates a lack of appreciation of the reality of the way in which the atmosphere mediates the flow of solar energy to the surface of the planet and a lack of appreciation of the manner in which the atmosphere actively cools the surface.

To suggest that back radiation is causing warming without first ascertaining that cloud cover has not fallen away indicates an appalling lack of common sense and responsibility.  This brand of ‘science’ is unworthy of the name.

Many sceptics of the AGW argument wrestle with the notion that there is some sense in the idea of ‘back radiation’ from clouds and a CO2 rich atmosphere and try and assess whether the ‘feedbacks’ built into IPCC climate models are an exaggeration of reality. Most unfortunately this belief in cloud radiation feedback and the primacy of a ‘back radiation effect’ has given the ‘anthropogenic’ argument legitimacy.

Back radiation is no defence against a wind chill effect! You wear clothes to combat conduction and convection. To think otherwise is to be muddle headed.

The manner in which the Earth warms and cools indicates that there is another mechanism at work. This other mechanism has primacy and a study of the manner in which the globe has warmed and cooled suggests that it is also a sufficient explanation of the change that has occurred. It is a two way process, capable of warming and cooling as we observe on an inter-annual basis. The mechanism that is responsible for inter-annual variations is also responsible for the decadal and longer trends. When you understand the mechanism you will see that cooling has already begun and more cooling is the immediate prospect.

If you can not explain the inter-annual variations you fail climate 101. UNIPPC, you fail climate 101.