Heresy and orthodoxy

Overnight, I have a comment on my Chapter 3 from none other than Anthony Watts. ‘What an atrocious article’. Anthony has certainly nailed his colours to the wall with that comment. What is he on about? I reply below:

This post is an impromptu based upon some interesting material that turned up in a search on the words: ‘ozone surface pressure’ the day before yesterday.

In 1968 Gordon Dobson, the man measured the quantity of ozone in the stratosphere and revolutionized our understanding of the middle atmosphere  reviewed his life’s work (see here: and wrote the passage italicised below that gives a good indication of the methodical approach that the man had to his work. The wartime government in the UK was concerned that aircraft contrails were giving information to the enemy about aircraft movements and his task was to measure the amount of water vapour in the air where these aircraft flew. But his enduring interest was to discover the nature of the atmosphere and the drivers of surface weather because he was a meteorologist :

The wartime measurements of the humidity of the upper atmosphere, showing that the stratosphere is very dry, were of interest in relation to the question of the equilibrium temperature of the stratosphere. The temperature of the stratosphere was generally regarded as being controlled by the absorption and emission of longwave radiation, the chief absorbing gases being water vapor, carbon dioxide, and ozone. If the air in the stratosphere were nearly saturated with water vapor, then water vapor would far outweigh the others in importance. When it was found that the stratosphere only contained a few percent of the water vapor required to saturate it, the picture appeared quite different and the three gases appeared to be of equal importance in determining the temperature of the stratosphere. Another interesting result to come out of the measurements with the frost point hygrometer was that there were often layers of very dry air quite low down in the troposphere, which must have descended from high in the troposphere if not from the stratosphere. The results of this wartime work were presented in the Bakerian Lecture of the Royal Society for 1945.

Dobson lectured in meteorology at Oxford. A biography of Dobson is provided by University of Oxford Department of Physics at:

There,  you will find this statement:

Dobson inferred correctly that the cause of the warm stratosphere was heating by the absorption of ultraviolet solar radiation by ozone,

Longwave radiation is not ultraviolet radiation.

Apart from being a direct contradiction of what Dobson had written in 1968 the notion that the stratosphere owes its temperature to interception of short wave ultraviolet light is nonsense and you must ask yourself why the person writing Dobson’s biography should take that diametrically opposed position. Anyone who thinks about it for a moment will decide that Dobson is right and his biographer wrong. If short wave radiation were responsible for the heating of the stratosphere it would be warmest over the equator. The stratosphere is a markedly heterogeneous medium in terms of its ozone content and in high latitudes during winter there are relatively warm parcels of air that are well out of the reach of short wave solar radiation. The only form of energy available to these parcels is outgoing long wave. Ozone rich air gets warmer. If short wave energy were the only form available to heat ozone there would be very little differentiation in the temperature of the stratosphere in winter and meteorologists would not be setting up this website to study the variations in ozone content, atmospheric temperature and geopotential height in high latitudes :

Between 200 hPa and 10 hPa we have 20% of the atmosphere. Above 10 hPa we have just 1% of the atmosphere of which the stratosphere takes up the interval to 0.1 hPa. Above o.1 hPa we have just 0.01% of the atmosphere and none of it is classified as stratosphere. Short wave solar radiation contributes strongly to the heating of the stratosphere above 10 hPa. Long wave radiation from the Earth contributes to the heating of the stratosphere throughout, and into the mesosphere as well. If you must choose one of these sources of radiation as being dominant it is the latter.

Dobson spent most of his life in the field of optics (generation, propagation, and detection of electromagnetic radiation) and in manufacturing instruments to measure the energy in short wave spectra. His spectrophotometer selected out the wave length that is absorbed by ozone in the the process of its destruction in the stratosphere and compared that to wave lengths unaffected by their passage through the atmosphere and the ratio between the two enabled him to infer the quantity of ozone in the atmospheric column. The use of his instrument  resulted in major advances in our understanding of the atmosphere. He manufactured these instruments in a garden shed at his home. Later when the instruments were manufactured by others every one of them was brought to his garden shed for calibration against his original Dobson Meter Number 1.

Dobson was an expert when it came to the difference between short wave ionising radiation coming from the sun and long wave coming in the main from the Earth itself.

If you take the position that the stratosphere is heated by short wave incoming radiation alone, you deny that ozone is a greenhouse gas. You deny that it absorbs at 9-10 micrometres, a wave length that lies in the peak of the earth’s spectrum of infra-red emission and you deny that it can be responsible, via its effect on the density of the upper atmosphere for variations in surface pressure. AND THAT IS THE ENTIRE POINT.

Dobson who had worked briefly at the Eskdalemuir Geomagnetic Observatory in Scotland  wrote as follows in the same report:

Chree,’ using the first year’s results at Oxford had shown that there appeared to be a connection between magnetic activity and the amount of ozone, the amount of ozone being greater on magnetically disturbed days. Lawrence used the Oxford ozone values for 1926 and 1927 and in each year found the same relation as Chree had done. However, when he used the average ozone values for Northwest Europe-which should be less affected by local meteorological conditions-he found no relation at all, so it was concluded that both Chree’s results and his earlier ones had been accidental. This investigation has never been repeated.

And the decision to close off that particular line of investigation was designed to effectively shut the door on inquiries designed to ascertain if there existed a link between the solar wind and the flux in surface pressure at the surface of the Earth via the impact of the solar wind on the electromagnetic medium that is the upper atmosphere. There are false trails in science but people like Dobson don’t go to the trouble of mentioning them. There is an air of regret in the last sentence of that paragraph: This investigation has never been repeated.

This sort of obfuscation and denial is rife in the world of climate science as it is carried on in academic institutions and the IPCC where Dobsons successor in atmsopheric science at Oxford was the lead author of the first three IPCC reports . Though it may have been possible to shut down this type of inquiry at Oxford it continues elsewhere and the evidence of the link between atmospheric pressure and geomagnetic activity continues to accrue.

In his 1968 summary of his life’s work Dobson wrote this about his very early observation that Total Column Ozone mapped surface pressure:

At this time it was well known from the work of Dines and others that the stratosphere was warmer in cyclonic conditions and colder in anticyclonic conditions, and Lindemann also suggested that these differences of temperature might be due to different amounts of ozone in the stratosphere-cyclonic conditions having much ozone and anticyclonic conditions little ozone. It also seemed just possible that cyclones and anticyclones might be actually caused by different amounts of ozone in the upper atmosphere. We know now that there is, indeed, more ozone in cyclonic conditions than in anticyclonic conditions but that this is not the cause of the different pressure systems.

When I read this paragraph I see arm twisting going on and Dobson resisting. He takes every opportunity to suggest that ozone drives surface pressure, repeatedly states the connection, reminds people that Lindemann thought that ozone drove temperature (and therefore density) and then, surprisingly, in the last dozen words he capitulates.

Dobson had a position at Oxford University that was no doubt important to him. My guess is that he was being leaned on  by  people who were dead set on pushing a different narrative. These people were well aware that if surface pressure were to be seen to be dependent upon the ozone content of the upper half of the atmospheric column it would spoil their narrative and they prevailed upon him to alter his words accordingly.

Tell me this: if the presence of ozone in the upper half of a column of ascending air is not the cause of low surface pressure then, by what process can ozone enter a column of ascending air that draws its air from the lower atmosphere that is ozone deficient?

The narrative that denies ozone a role in determining surface pressure requires strict separation of a ‘troposphere’ from a ‘stratosphere’ so that convection in low pressure cells is limited to the troposphere. In point of fact cyclogenisis (indicated by the wind strength and enhanced density differential) increases from the surface into the stratosphere in a polar cyclone. The geopotential height anomaly associated with the Annular Modes that represent the shift in surface pressure between high latitudes and the rest of the globe is greatest in the stratosphere.

My long post Chapter 4  makes the exact same point as the last paragraph by examining the temperature profile of each latitude band between the inter-tropical convergence and 90° south.

“It would not be impossible to prove with sufficient repetition and a psychological understanding of the people concerned that a square is in fact a circle. They are mere words, and words can be molded until they clothe ideas and disguise.”
Joseph Goebbels

“That propaganda is good which leads to success, and that is bad which fails to achieve the desired result. It is not propaganda’s task to be intelligent, its task is to lead to success.”
Joseph Goebbels

If ordinary people can not be a little more intelligent the forces of darkness will prevail. For humanity’s sake, get angry. Do not let people who follow in Goebbel’s footsteps push you around.