Reflection of sunlight from cloud at 5-8km in elevation (Cirrus).

https://earthobservatory.nasa.gov/IOTD/view.php?id=90269&src=eoa-iotd

Quote:

The EPIC data also helped confirm that the flashes are coming from a high altitude, not simply water on the ground. Two channels on the instrument are designed to measure the height of clouds. According to the observations, high cirrus clouds—5 to 8 kilometers (3 to 5 miles) up in the atmosphere—appeared wherever the glints were located.

“The source of the flashes is definitely not on the ground,” Marshak said. “It is definitely ice, and most likely solar reflection off of horizontally oriented particles.”

Marshak is now investigating how common these horizontal ice particles are, and whether they are common enough to have a measurable impact on how much sunlight passes through the atmosphere. If so, it is a feature that would need to be incorporated into computer models of how much heat is reaching and leaving Earth.

Perhaps we should admit that it will take time to get ‘the science’ properly settled.

There is a notion in IPCC  ‘climate science’ that high altitude cloud has a warming influence on the surface.    A manurial notion if ever there was one.

As to whether there will be ice cloud at elevation or not….then the ozone content of the air will be a factor of importance because ozone absorption of infrared from the Earth itself determines air temperature and therefore relative humidity and the degree and extent of precipitation.

The polar vortex. Fantasy versus reality.

In January 2017 an essay  appeared with the title:

WHAT IS THE POLAR VORTEX AND HOW DOES IT INFLUENCE WEATHER?

Authors are Darryn W. Waugh, Adam H. Sobel, and Lorenzo M. Polvani

The essay can be found here: http://journals.ametsoc.org/doi/pdf/10.1175/BAMS-D-15-00212.1

Unfortunately  this essay does nothing to advance our knowledge of the role of the polar atmosphere in determining climate dynamics. It represents the contrived views of established climate science practitioners of the alarmist persuasion.

There is a relationship between the ozone content of the air and surface pressure that was discovered prior to 1900 that was well documented by Dobson in the 1920s. In mid and high latitudes low surface pressure is associated with superior total column ozone. Ozone is a warming, rarefying influence because it is a greenhouse gas mobilising infrared energy from the Earth itself, even within the region of the polar night. To materially change surface pressure ozone must be present through the bulk of the atmospheric column. Half of the atmospheric column is found below the 500 hPa pressure level and half above. More than half of the column is affected. It follows that the tropopause is not found at the same pressure level in high latitudes as it is in low latitudes. This is important because the tropopause marks the boundary between the troposphere and the stratosphere.

Let me begin by taking issue with this following statement from the Waugh, Sobel and Polvani paper: The strong circumpolar westerlies that define the stratospheric polar vortex maximize at around 60° latitude, from just above the tropopause (~100 hPa) into the mesosphere (above 1 hPa; see Fig. 2).

The ’tropopause’, by definition, is found at the elevation where air temperature ceases to decline with altitude. Wikipedia puts it this way: ‘Going upward from the surface, it is the point where air ceases to cool with height, and becomes almost completely dry.’

The reversal of temperature decline at ‘the tropopause’ is due to the presence of ozone that absorbs energy from Earths long wave radiation in the infrared spectrum.  The ‘tropopause’ marks the start of the stratosphere where the air is dry and it warms or at least maintains its temperature with increasing elevation.

The atmosphere in the mid latitudes between 400 hPa and 50 hPa moves from west to east and pole-wards. The strongest winds on the planet are the north westerlies of the southern hemisphere. Even in the northern hemisphere air masses move gradually southwards towards the Antarctic polar front where surface air pressure achieves a planetary minimum that is sustained across all months of the year.

In regions of low surface pressure, commonly centred at about 60° of latitude, the decline in temperature with increasing altitude ceases at a lower elevation (400hPa) than in zones of high surface pressure. Between 400 hPa and 50 hPa air masses with a very different composition in terms of ozone, temperature and density occupy the same horizontal domain. Here, instability is the rule. Ozone rich air is displaced upwards and polar cyclones are initiated. Polar cyclones propagate from the interaction layer down to the surface and they initiate the flow that manifests as the vortex in the stratosphere.

Over the polar cap the temperature of the air falls all the way between the surface and the upper stratosphere. Patently, there is no tropopause to be found inside the vortex. Here the air contains little ozone.

Lets re-iterate this point: Polar cyclones are generated at the front between air of polar and extra-tropical origin the latter being rich in ozone, warmer, less dense and manifesting at a lower altitude. The ‘polar front’ is where two air streams of different character converge. The difference in air density is most extreme in winter due to the descent of ozone starved mesospheric air inside the vortex and the increase in the ozone content of the air outside the vortex in the winter season. But, summer or winter, it is the ozone content of the air, and its latitudinal origin that is a major influence on air density. If air travels pole-wards it is less dense because it comes from a warmer place and in addition it is continually warmed because it is ozone rich. As such it derives energy from the Earths itself.

Polar cyclones propagate downwards from the domain where marked differences in the ozone content of the air manifest. This domain  lies between the 400 hPa and 50 hPa pressure levels. This domain can not be described as either troposphere or stratosphere and the term ‘tropopause’ has no place in the description of the properties of this domain. Arguably, in winter, the atmosphere directly over the poles is entirely stratospheric and mesospheric in origin. It is extremely dry and very cold. Air that enters the circulation from the mid latitudes is warm and rich in ozone. It is stratospheric in its composition at 400 hPa.

A chain of Polar Cyclones constitutes THE POLAR VORTEX. The strongest winds are located between 400 hPa and 50 hPa and again in the upper stratosphere at 10 hPa.

Given the relationship between the ozone content of the air and its density and also the highly variable increase in the ozone content of the air in winter from one winter to the next and also across the decades, the rate of transfer of energy from the equator to polar regions via atmospheric movement is inconstant.  The temperature of the air at a particular location  is  a function of the strength of the polar vortex. Enhanced north westerly winds in the southern hemisphere are consistent with enhanced flows of warm, moist air of tropical origin to high latitudes. On the other hand, displacement of the polar cyclones towards the equator brings cold polar air to the mid latitudes. Lower surface pressure in high latitudes results in higher surface pressure in the mid latitudes affecting cloud cover, rainfall, and air flows.

The decline in surface pressure at all latitudes south of 50° south over the last seventy years is well documented.  This decline in surface pressure relates to an increase in the ozone content of the air outside the vortex. It constitutes climate change in action.

RE The stratospheric polar vortex appears each win­ter as a consequence of the large-scale temperature gradients between the midlatitudes and the pole.

Emphatically no, the vortex is a product of variations in air density at the same elevation, not the gradient in temperature between the equator and the pole. In winter ascent occurs outside the vortex proceeding to the limits of the stratosphere while descent of cold air prevails inside the vortex. Descent also occurs in the mid latitudes of the winter hemisphere where high pressure cells prevail.  Over the polar cap in winter descent is reinforced by high surface pressure. In summer a gently ascending circulation of low density ozone rich air occurs in the stratosphere across the entire polar cap. For this reason and the slight warming due to summer insolation and despite the shift in the atmosphere from mid latitudes to the poles as surface pressures rise due to reduced polar cyclone activity, polar surface pressure is  lower in summer than in winter.

Differences between the hemispheres

There is a fundamental difference between the hemispheres in the nature of the polar vortex. It is more vigorous and longer sustained in its winter form in the southern hemisphere than in the northern hemisphere. This is due to sustained contrasts in air density in the 400 hPa to 50 hPa domain on the margins of Antarctica. The geography of the distribution of land and sea between the hemispheres is responsible for this difference. In the upshot strong flows of mesospheric air inside the vortex dilute the ozone content of the air in the entire southern hemisphere while an absence of this flow in the northern hemisphere allows ozone partial pressure to build.

The Ozone Hole over Antarctica in Spring

This phenomenon is entirely natural. It is a consequence of the change in the circulation of the air during the final warming that brings ozone deficient tropospheric air of mid latitude origin flooding across the polar cap and into the 400 hPa to 50 hPa domain.

Rossby Waves and sudden stratospheric warmings.

 re this statement

“Rossby waves excited in the troposphere propagate up into the stratosphere and perturb the vortex away from radiative equilibrium, weakening it and distorting its shape away from circular symmetry about the pole.”

The more rational explanation is that localised centres of tropospheric descent and stratospheric ascent that form up in the mid latitudes over the oceans are periodically invigorated as ozone accumulates above 50 hPa. Episodically, these centres of ozone accumulation expand in diameter and invade the polar domain assisting the lowering of surface pressure in high latitudes as they do so. Centres of  ozone accumulation are represented on diagrams of the upper atmosphere as  regions of elevated geopotential height. The phenomenon of sudden stratospheric warmings in winter are no different in nature to that of the final stratospheric warming in late spring.  Both involve a takeover of the polar cap by ozone rich air that circulates anticlockwise on the outer margins of the polar vortex. Hence, in summer, and during a stratospheric warming over the pole, easterlies replace westerly winds at the 10 hPa pressure elevation. The takeover in winter begins and has its greatest impact at the highest elevations.

All movements in the atmosphere are driven in the first instance by surface pressure relationships. Secondly, differences in air density in the horizontal domain result in uplift whatever the elevation that they occur at. Thirdly, in view of the fact that the atmosphere rotates in the same direction as the Earth, but faster, there is very likely an electromagnetic driver that is most energetic at the highest elevations where the atmosphere carries particles with an electric charge. Gravity ensures that what goes up must come down. Areas of descent tend to form over the cooler oceans especially in the winter hemisphere. In the upper stratosphere these areas of tropospheric descent are ozone rich and give rise to ascent and spreading as ozone accumulates.

Inside the polar vortex there is mixing of stratospheric and mesospheric air, that remains relatively ozone poor.

Conclusion: Climate science as presently constituted fails to get to grips with the natural and enduring dynamics of the atmosphere that are manifestly responsible for climate change. Unfortunately establishment climate science is wedded to the philosophy that demonises carbon dioxide, an essential ingredient for photosynthesis on land and in the oceans. Carbon dioxide is at the base of the food chain. Human welfare is tied to its proliferation.

The establishment has it ‘arse about’ and are hell bent on ruination.

Progress

If one appreciates the way in which the planet has warmed in some places and not in others, the way it warms in winter rather than in summer, the way it warms in fits and starts then, the thesis that the warming relates to the steadily increasing proportion of so called ‘greenhouse gases’ in the atmosphere must be seen to be implausible. If one appreciates that the high latitudes of the southern hemisphere are cooler today than seven decades ago, then it is obvious that there are more influential factors at work. If one appreciates that the entire southern hemisphere is no warmer today in the month of December than it was in the nineteen fifties then a sensible person would have to conclude that something other than the ‘enhanced greenhouse effect’ is at work. The  change in surface temperature is plainly not due to enhanced back radiation alone, if at all.

Indeed there are natural factors at work that have nothing to do with the activities of man. THE FUNDAMENTAL modes of natural climate change have been termed the Northern Annular Mode and the Southern Annular Mode. These modes involve shifts in atmospheric mass from high to mid and low latitudes and across the hemispheres accompanied by change in surface pressure, the winds and surface temperature.

Surface pressure simply reflects the total ozone content of the atmospheric column, an identity that was discovered more than 100 years ago. Ozone is material to the presence of what we call the stratosphere. It is change in the ozone content of the stratosphere that is responsible for change in surface pressure, surface winds, sea surface and air temperature.

I abandoned this blog for months while engaged in a project that demanded my full attention. During this period the election of Trump to the presidency of the USA and the appointment of men who understand that cheap and reliable energy is a requirement for economic growth and sustained living standards has led climate realists to think that the tide of manipulation designed to promote the idea of  ‘renewables’ will been turned back and we can at last relax.

The last few days have been spent on the flat of my back. With little else to do I went to Google to discover whether any progress has been made in explaining the role of the annular modes …and indeed there has, but in Beijing, not in Washington or Colorado.

I direct the reader to this page: http://ljp.gcess.cn/dct/page/65558

It is a treasure trove of useful observation and deduction.

A paper published in December 2016 is of the first importance

Xie, F., J. Li*, W. S. Tian, Q. Fu, F. F. Jin, Y. Y. Hu, J. K. Zhang, W. K. Wang, C. Sun, J. Feng, Y. Yang and R. Q. Ding, 2016:A connection from Arctic stratospheric ozone to El Niño-Southern oscillation. Environ. Res. Lett., 11, doi:10.1088/1748-9326/11/12/124026.

The paper can be accessed here: http://ljp.gcess.cn/thesis/files/Xie_2016_Environ._Res._Lett._11_124026.pdf

What is known as the El Nino Southern Oscillation represents the most spectacular manifestation of surface temperature change. This phenomenon has been described as an ‘oscillation’ that is said to be internal to the climate system. Not so. It has its origin in change in the stratosphere in high latitudes that is the subject of previous chapters in this blog. The most dramatic swings in the ozone content of the stratosphere occur in the northern hemisphere in winter.The poles are where climate change is initiated.

The authors conclude that: ‘understanding this kind of connection and potential feedback between the stratospheric tracer gases (such as ozone) and the climate system deserves more attention.’

I concur.

It’s one thing to identify the chain of causation and another to understand and explain the physical processes behind it. It’s yet another to explain how and why ozone varies in the polar stratosphere and to explain the drivers that operate in the upper atmosphere where the Earth system is a part of the interplanetary environment. This is the real frontier in climate science.

There is no great urgency to discover and describe the mechanisms involved, no pressing need for massive funding unless humanity is led astray by false prophets. We can expect that those who have a vested interest in continued funding of their ‘global warming’enterprise will put up vociferous arguments to try and justify their claims. End of the day, the voters decide how their taxes are spent and it appears that, when offered a clear alternative, voters can work out when they are being ‘had’ and adjust accordingly. It’s possible to fool some of the people some of the time but not all of the people all of the time.

Let’s hope the tide has turned.

Its a worry that ‘global warming’ hysteria got as far as it did and did as much damage as it did before people woke up to what has been happening.

42 THE WARMING OF THE INDIAN OCEAN. THE CANARY IN THE COAL MINE

CAUSE OF WARMING

In general the planet warms as surface pressure increases in low and mid latitudes.

The chain of causation runs like this: Increased surface pressure is associated with increased geopotential height, extra warmth in the atmospheric column and a consequent reduction in the quotient of moisture held in the very expansive ice crystal form. As cloud cover diminishes more solar radiation reaches the surface of the planet. When energy is absorbed by the ocean it is stored to depth and, by virtue of ocean currents, re-distributed, fortuitously warming those parts that receive little solar energy.

In contrast, when solar energy falls on land it is swiftly, in the main overnight, returned to the atmosphere. The warming of the atmosphere that is occasioned in northern summer, due to the extensive land masses of that hemisphere,  results in a global deficit of cloud cover in the middle of the year producing the annual maximum in planetary temperature when the Earth is furthest from the sun and solar irradiance 6% diminished by comparison with January.  It should be obvious (how did climate scientists miss this?) that the primary dynamic determining surface temperature is the temperature of the atmosphere in relation to the moisture that it contains.

REDISTRIBUTION

Please inspect the map below. The planetary winds drive ocean currents that mix cold waters from high latitudes and the ocean deep into the warm waters of the tropics. This is evident on the eastern margins of the oceans and particularly so in the southern hemisphere. The Indian Ocean is the odd man out with a weak cold current on its western margins and a warm, southward travelling, current on its eastern margin. The consequence is a relative backwater that is less  affected by the mixing of cold with warm water.

global-sst

It follows that the circulation of the oceans results in a very different thermal regime in each basin according to the  the ocean currents that are primarily driven by the winds. As the winds evolve, so do the currents.

The table below documents the extent of the temperature increase  over the last 68 years according to latitude and longitude in the three major ocean basins. For economy I focus on those latitudes that are warm enough to be relatively hospitable  to man.

sst-in-numbers

It is obvious that the bulk of the Pacific Ocean has not warmed to the same extent as the Indian and Atlantic Oceans. In terms of basin averages, in January the Indian Ocean has warmed by 0.87°C, The Pacific by 0.42°C and the Atlantic by 0.46°C. In July the Indian has warmed by 0.84°C the Pacific by 0.12°C and the Atlantic by 0.6°C. It is in July that the contrast between the oceans is strongest.It is the Indian Ocean that has warmed to the greatest extent.

THE SURFACE PRESSURE DYNAMIC

annual-slp

If we are to understand the differences in the rate of warming of the Ocean basins we need to comprehend to role of polar cyclones in high latitudes. Enhanced polar cyclone activity in the Antarctic circumpolar trough (red and orange in the map above) has, over the period of record, shifted atmospheric mass into low and mid latitudes from latitudes south of the 50° parallel. In consequence the high latitude west wind drift that is coextensive with the circumpolar trough, that drives cold water into the tropics, has accelerated. The flow is restricted at the Drake Passage between the Pacific and the Atlantic. Accordingly the Pacific Ocean cooled in parts and generally warmed at a much reduced rate when compared to the Indian and Atlantic Oceans.

drake-passage

The Indian Ocean is like the canary in the coalmine, a companion to the miner to warn him of a change in the quality of the air. The evolution of surface temperature in the Indian Ocean offers a glimpse of unfettered reality in terms of the march of surface temperature across the globe as it is forced by change in cloud cover associated with shifts in atmospheric mass and the change in the planetary winds.

The remainder of this chapter explores the shift in atmospheric mass from high southern latitudes and its relationship to surface pressure in the rest of the globe and the Indian Ocean in particular.

The discussion is is not based on the hypothetical constructs of a climate model or the abstruse mysteries of so called ‘planetary forcings’.  Rather it is grounded in observation and measurement based on data as  presented in the reanalysis work of Kalnay et al accessible here.

The graph below represents the evolution of surface pressure in the Indian Ocean south of the equator.We must to answer the question: Why is it so?

slp-indian-ocean-south-of-equator

WHY WORRY

The entire southern hemisphere has not warmed in the month of December in the last 68 years. If surface temperature were being forced by increased back radiation from the atmosphere the southern hemisphere should warm in all months.  There is no reason to expect the degree of warming due to a hypothetical increase in back radiation to be different in one month to another.  We therefore discard the hypothesis that temperature at the surface is driven by the carbon dioxide content of the atmosphere.  We look for other mechanisms to explain the flux in surface temperature. Radiation theory is all very well but in the real world, inoperable. The concept of anthropogenic warming is a distraction from fairyland. We can, to advantage, be more discriminating in what we choose to believe.

SURFACE PRESSURE DYNAMICS

sh-high-lat-surface-pressure
Figure 1 Sea level pressure in the region of the Antarctic circumpolar trough compared to sea level pressure in the entire region south of 50° south latitude.

Figure 1 compares the evolution of sea level atmospheric pressure in the Antarctic circumpolar trough to all latitudes south of 50° south. It is plain that the relatively short term fluctuations in surface pressure in the larger entity are greater than in the ‘trough’. In point of fact the trough expands and contracts across the parallels affecting surface pressure in adjacent latitudes and in particular across the Antarctic continent. The agent of change is polar cyclone activity that is energised by differences in atmospheric density between very different parcels of air that meet in the region of the trough in the very broad interface between the stratosphere and the troposphere between about 400 hPa and 50 hPa. It is in this region that the strongest winds are to be found. Polar cyclones are generated aloft. This is the nature of the ‘coupling of the troposphere with the stratosphere’, a concept that is a postulate of conventional climate science but remains a mystery so far as its modes of causation is concerned. If one is wedded to radiation theory it limits the mind.

slp-50-90-s-and-90n-to-50s
Figure 2 twelve month moving averages of sea level pressure either side of the 50° south latitude band encompassing the globe as a whole.

In figure 2 we compare the evolution of surface pressure south of the 50° south  parallel of latitude with surface pressure north of that same parallel. If the total mass of the atmosphere were to be invariable we would expect a strictly reciprocal relationship. As pressure falls on one side of the 50th parallel it should rise on the other. Plainly, the increase, decrease and subsequent increase in surface pressure in concert, between 1948 and 1964, is evidence of a planetary evolution in the quantum of atmospheric mass perhaps associated with enhanced loss in very active solar cycles and incremental gain in quiet cycles. That is a subject for another day.

Plainly, since 1964 it is the reciprocal transfer relationship that dominates. When atmospheric mass is lost south of the 50th parallel it moves north the 50th parallel and vice versa.This process of exchange is referred to as the Antarctic Oscillation.

slp-indian-versus-90n-50s
Figure 3

In figure 3 we compare the evolution of surface pressure in the Indian Ocean south of the equator through to 30°of latitude with that north of the 50th parallel.

indian-versus-90n-70-50s-two-axis
Figure 4

Figure 4 presents the same information as in figure 3 but on two axes with independent scales. It’s plain that broadly speaking the Indian Ocean south of the equator gains and loses atmospheric mass in parallel with all points north of the 50th south parallel but there are short term differences. These discrepancies are likely due to complex interactions between the southern and the northern hemispheres where, depending on the time of the year the Arctic Oscillation imposes change in the southern hemisphere or in the reverse, the Antarctic Oscillation imposes change on the northern hemisphere, tending to produce ‘mirror image’ results. Short term variations in these two data series  can be in opposite directions.

sst-indian

Figure 5

In figure 5 we compare the evolution of sea surface temperature in the Indian Ocean north of the equator  with that south of the equator.  The data is a twelve month moving average of monthly  means so as to remove the seasonal influence. It is plain that the more extreme variations occur north of the equator. Nevertheless the series are very similar in their evolution with generally coincident peaks.

sst-and-slp
Figure 6

In figure 6 we compare the evolution of sea level pressure in the Indian Ocean to the south of the equator with the evolution of sea surface temperature in the Indian Ocean north of the equator. Sea surface temperature tends to lag surface pressure by a few months. Plainly the Antarctic Oscillation affects sea surface temperature via coincident heating of the atmospheric column as reflected in increased geopotential height driving a reduction in cloud cover.

indian-ocean-sst-and-gph
Figure 7

Figure 7 looks at the relationship between geopotential height and sea surface temperature. Note that geopotential height is strongly related to sea surface temperature but the relationship is  not proportional. It is not the increase in sea surface temperature that drives the increase in geopotential height but warming of the air column due to the increase in the ozone content of the air within descending columns of air. These air columns reflect in their temperature the increased surface pressure, the increased warming at the surface and the increase in the ozone content of the descending air. At 200 hPa the air is warmer in winter than in summer due to enhanced ozone content in winter. The temperature of the air is independent of the temperature of the surface over which it lies.

slp-and-sst-monthly-indian
Figure 8 Sea level pressure in the Indian Ocean south of the equator compared to sea surface temperature north of the equator. Temperature lags pressure.by several months. There is pronounced warming in southern hemisphere winter months and occasional warming cycles in the summer months, notably in 2009-2010 and 2012- 2013. This warming is tied to the ozone content of the air in high latitudes.

In figure 8 we focus on monthly data.  Shown is the departure of a particular month’s data from the whole of period average for that month.

This graph reveals a climate system that is capable of swinging between a sea surface temperature anomaly of about -0.3°C and +1.2°C in an interval of between one and six years. The amplitude of this variation is almost double the increase in temperature that has occurred in the Indian Ocean over the last 68 years.  In this circumstance we should simply move on. There is nothing exceptional about this increase in temperature. There is no need to invoke new modes of causation to explain this phenomenon.

RECAP

Why has surface pressure and sea surface temperature in the Indian Ocean increased almost continuously since 2011? The answer lies in the forces that determine polar cyclone activity in the Antarctic circumpolar trough. Those circumstances relate to the  changing nature of the atmosphere in the area of overlap between the stratosphere and the troposphere in high southern latitudes.

As Gordon Dobson observed back in 1925, surface pressure is a by-product of total column ozone. Low pressure cells have more ozone aloft and exhibit a lower tropopause than high pressure cells.

Ultimately polar cyclone activity and surface temperature together with wind direction and intensity and the extent of mixing in the ocean  are a function of the ozone content of the air in high latitudes.